Advertisement

On the Boundedness Property of Semilinear Sets

  • Oscar H. Ibarra
  • Shinnosuke Seki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7876)

Abstract

An additive system to generate a semilinear set is k-bounded if it can generate any element of the set by repeatedly adding vectors according to its rules so that pairwise differences between components in any intermediate vector are bounded by k except for those that have achieved their final target value. We look at two (equivalent) representations of semilinear sets as additive systems: one without states (the usual representation) and the other with states, and investigate their properties concerning boundedness: decidability questions, hierarchies (in terms of k), characterizations, etc.

Keywords

semilinear set generator without states generator with states bounded multitape NFA decidable undecidable 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Doty, D., Patitz, M.J., Summers, S.M.: Limitations of self-assembly at temperature 1. Theoretical Computer Science 412(1-2), 145–158 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Eğecioğlu, Ö., Ibarra, O.H., Tran, N.Q.: Multitape NFA: Weak synchronization of the input heads. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 238–250. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill, New York (1966)zbMATHGoogle Scholar
  4. 4.
    Harju, T., Ibarra, O.H., Karhumäki, J., Salomaa, A.: Some decision problems concerning semilinearity and commutation. Journal of Computer and System Sciences 65(2), 278–294 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (1979)Google Scholar
  6. 6.
    Hopcroft, J., Pansiot, J.-J.: On the reachability problem for 5-dimensional vector addition systems. Theoretical Computer Science 8, 135–159 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Huynh, D.T.: The complexity of semilinear sets. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 324–337. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  8. 8.
    Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. Assoc. Comput. Mach. 25, 116–133 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ibarra, O.H., Seki, S.: Characterizations of bounded semilinear languages by one-way and two-way deterministic machines. International Journal of Foundations of Computer Science 23(6), 1291–1305 (2012)CrossRefGoogle Scholar
  10. 10.
    Ibarra, O.H., Tran, N.Q.: Weak synchronization and synchronizability of multitape pushdown automata and Turing machines. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 337–350. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Ibarra, O.H., Tran, N.Q.: How to synchronize the heads of a multitape automaton. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 192–204. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Ibarra, O.H., Tran, N.Q.: On synchronized multitape and multihead automata. In: Holzer, M. (ed.) DCFS 2011. LNCS, vol. 6808, pp. 184–197. Springer, Heidelberg (2011)Google Scholar
  13. 13.
    Lavado, G.J., Pighizzini, G., Seki, S.: Converting nondeterministic automata and context-free grammars into Parikh equivalent deterministic automata. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 284–295. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Parikh, R.J.: On context-free languages. J. Assoc. Comput. Mach. 13, 570–581 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    To, A.W.: Model Checking Infinite-State Systems: Generic and Specific Approaches, Ph.D. thesis, School of Informatics, University of Edinburgh (2010)Google Scholar
  16. 16.
    Yu, F., Bultan, T., Ibarra, O.H.: Relational string verification using multi-track automata. Int. J. Found. Comput. S. 22, 1909–1924 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Oscar H. Ibarra
    • 1
  • Shinnosuke Seki
    • 2
    • 3
  1. 1.Department of Computer ScienceUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Helsinki Institute of Information Technology (HIIT)Aalto UniversityAaltoFinland
  3. 3.Department of Information and Computer ScienceAalto UniversityAaltoFinland

Personalised recommendations