Minimax Regret 1-Sink Location Problems in Dynamic Path Networks

  • Siu-Wing Cheng
  • Yuya Higashikawa
  • Naoki Katoh
  • Guanqun Ni
  • Bing Su
  • Yinfeng Xu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7876)


This paper considers minimax regret 1-sink location problems in dynamic path networks. A dynamic path network consists of an undirected path with positive edge lengths and constant edge capacity and the vertex supply which is nonnegative value, called weight, is unknown but only the interval of weight is known. A particular assignment of weight to each vertex is called a scenario. Under any scenario, the cost of a sink is defined as the minimum time to complete evacuation for all weights (evacuees), and the regret of a sink location x is defined as the cost of x minus the cost of an optimal sink. Then, the problem is to find a point as a sink such that the maximum regret for all possible scenarios is minimized. We present an O(n log2 n) time algorithm for minimax regret 1-sink location problems in dynamic path networks, where n is the number of vertices in the network.


minimax regret sink location dynamic flow path networks evacuation problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Averbakh, I., Berman, O.: Algorithms for the robust 1-center problem on a tree. European Journal of Operational Research 123(2), 292–302 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bhattacharya, B., Kameda, T.: A linear time algorithm for computing minmax regret 1-median on a tree. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 1–12. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Brodal, G.S., Georgiadis, L., Katriel, I.: An O(n logn) version of the Averbakh-Berman algorithm for the robust median of a tree. Operations Research Letters 36(1), 14–18 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, D., Chen, R.: A relaxation-based algorithm for solving the conditional p-center problem. Operations Research Letters 38(3), 215–217 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, B., Lin, C.: Minmax-regret robust 1-median location on a tree. Networks 31(2), 93–103 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Conde, E.: Minmax regret location-allocation problem on a network under uncertainty. European Journal of Operational Research 179(3), 1025–1039 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Conde, E.: A note on the minmax regret centdian location on trees. Operations Research Letters 36(2), 271–275 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures persistent. Journal of Computer and System Sciences 38(1), 86–124 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kamiyama, N., Katoh, N., Takizawa, A.: An efficient algorithm for evacuation problem in dynamic network flows with uniform arc capacity. IEICE Transactions 89-D(8), 2372–2379 (2006)Google Scholar
  10. 10.
    Kouvelis, P., Yu, G.: Robust discrete optimization and its applications. Kluwer Academic Publishers, Dordrecht (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Mamada, S., Uno, T., Makino, K., Fujishige, S.: An O(n log2 n) Algorithm for the Optimal Sink Location Problem in Dynamic Tree Networks. Discrete Applied Mathematics 154(16), 2387–2401 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    McCreight, E.M.: Priority Search Trees. SIAM Journal on Computing 14(2), 257–276 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ogryczak, W.: Conditional median as a robust solution concept for uncapacitated location problems. TOP 18(1), 271–285 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Puerto, J., Rodríguez-Chía, A.M., Tamir, A.: Minimax regret single-facility ordered median location problems on networks. Informs Journal on Computing 21(1), 77–87 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Siu-Wing Cheng
    • 1
  • Yuya Higashikawa
    • 2
  • Naoki Katoh
    • 2
  • Guanqun Ni
    • 3
  • Bing Su
    • 4
    • 6
  • Yinfeng Xu
    • 3
    • 5
    • 6
  1. 1.Department of Computer Science and EngineeringThe Hong Kong University of Science and TechnologyHong Kong
  2. 2.Department of Architecture and Architectural EngineeringKyoto UniversityJapan
  3. 3.Business SchoolSichuan UniversityChengduChina
  4. 4.School of Economics and ManagementXi’an Technological UniversityXi’anChina
  5. 5.School of ManagementXi’an Jiaotong UniversityXi’anChina
  6. 6.State Key Lab for Manufacturing Systems EngineeringXi’anChina

Personalised recommendations