Non-crossing Connectors in the Plane

  • Jan Kratochvíl
  • Torsten Ueckerdt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7876)


We consider the non-crossing connectors problem, which is stated as follows: Given n regions R1,…,Rn in the plane and finite point sets Pi ⊂ Ri for i = 1,…,n, are there non-crossing connectors γi for (Ri,Pi), i.e., arc-connected sets γi with Pi ⊂ γi ⊂ Ri for every i = 1,…,n, such that γi ∩ γj = ∅ for all i ≠ j?

We prove that non-crossing connectors do always exist if the regions form a collection of pseudo-disks, i.e., the boundaries of every pair of regions intersect at most twice. We provide a simple polynomial-time algorithm if each region is the convex hull of the corresponding point set, or if all regions are axis-aligned rectangles. We prove that the general problem is NP-hard, even if the regions are convex, the boundaries of every pair of regions intersect at most four times and Pi consists of only two points on the boundary of Ri for i = 1,…,n.

Finally, we prove that the non-crossing connectors problem lies in NP, i.e., is NP-complete, by a reduction to a non-trivial problem, and that there indeed are problem instances in which every solution has exponential complexity, even when all regions are convex pseudo-disks.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aloupis, G., Cardinal, J., Collette, S., Demaine, E., Demaine, M., Dulieu, M., Fabila-Monroy, R., Hart, V., Hurtado, F., Langerman, S., Saumell, M., Seara, C., Taslakian, P.: Non-crossing matchings of points with geometric objects. Computational Geometry (2012),
  2. 2.
    Cole, R., Siegel, A.: River routing every which way, but loose. In: 25th Annual Symposium on Foundations of Computer Science, pp. 65–73 (1984)Google Scholar
  3. 3.
    Di Battista, G., Frati, F.: Efficient c-planarity testing for embedded flat clustered graphs with small faces. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 291–302. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Efrat, A., Kobourov, S.G., Lubiw, A.: Computing homotopic shortest paths efficiently. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 411–423. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Fellows, M.R., Kratochvíl, J., Middendorf, M., Pfeiffer, F.: The complexity of induced minors and related problems. Algorithmica 13, 266–282 (1995)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Feng, Q., Cohen, R., Eades, P.: How to draw a planar clustered graph. In: Li, M., Du, D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 21–30. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  7. 7.
    Feng, Q., Cohen, R., Eades, P.: Planarity for clustered graphs. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Karp, R.M.: Reducibility among combinatorial problems. Complexity of Computer Computations (1972)Google Scholar
  9. 9.
    Kratochvíl, J.: String graphs II. Recognizing string graphs is NP-hard. Journal of Combinatorial Theory, Series B 52(1), 67–78 (1991)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kratochvíl, J., Lubiw, A., Nešetřil, J.: Noncrossing subgraphs in topological layouts. SIAM Journal on Discrete Mathematics 4(2), 223–244 (1991)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kratochvíl, J., Matoušek, J.: String graphs requiring exponential representations. Journal of Combinatorial Theory, Series B 53(1), 1–4 (1991)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kratochvíl, J., Ueckerdt, T.: Non-crossing connectors in the plane. CoRR, abs/1201.0917 (2012)Google Scholar
  13. 13.
    Lichtenstein, D.: Planar formulae and their uses. SIAM Journal on Computing 11(2), 329–343 (1982)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Löffler, M.: Existence of simple tours of imprecise points. In: 23rd European Workshop on Computational Geometry, EuroCG (2007)Google Scholar
  15. 15.
    Lynch, J.F.: The equivalence of theorem proving and the interconnection problem. SIGDA Newsl. 5(3), 31–36 (1975)CrossRefGoogle Scholar
  16. 16.
    Pinter, R.Y.: River routing: Methodology and analysis. In: 3rd CalTech Conf. on Very Large-Scale Integration, pp. 141–163 (1983)Google Scholar
  17. 17.
    Robertson, N., Seymour, P.D.: Graph minors. VII. disjoint paths on a surface. J. Comb. Theory Ser. B 45(2), 212–254 (1988)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Robertson, N., Seymour, P.D.: Graph minors. XIII: the disjoint paths problem. J. Comb. Theory Ser. B 63(1), 65–110 (1995)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Sarrafzadeh, M., Liao, K.F., Wong, C.K.: Single-layer global routing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 13(1), 38–47 (1994)CrossRefGoogle Scholar
  20. 20.
    Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. Journal of Computer and System Sciences 67(2), 365–380 (2003)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Schrijver, A.: Homotopic routing methods, pp. 329–371. Springer, Berlin (1990)Google Scholar
  22. 22.
    Speckmann, B.: Personal communication (2011)Google Scholar
  23. 23.
    Verbeek, K.: Non-crossing paths with fixed endpoints. Master’s Thesis, Eindhoven (2008)Google Scholar
  24. 24.
    Verbeek, K.: Homotopic C-oriented routing. In: Proceedings of 28th European Workshop on Computational Geometry, EuroCG 2012, pp. 173–176 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jan Kratochvíl
    • 1
  • Torsten Ueckerdt
    • 1
  1. 1.Department of Applied Mathematics, Faculty of Mathematics and PhysicsCharles University in PragueCzech Republic

Personalised recommendations