Selfish Resource Allocation in Optical Networks

  • Evangelos Bampas
  • Aris Pagourtzis
  • George Pierrakos
  • Vasilis Syrgkanis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7878)

Abstract

We introduce Colored Resource Allocation Games as a new model for selfish routing and wavelength assignment in multifiber all-optical networks. Colored Resource Allocation Games are a generalization of congestion and bottleneck games where players have their strategies in multiple copies (colors). We focus on two main subclasses of these games depending on the player cost: in Colored Congestion Games the player cost is the sum of latencies of the resources allocated to the player, while in Colored Bottleneck Games the player cost is the maximum of these latencies. We investigate the pure price of anarchy for three different social cost functions and prove tight bounds for each separate case. We first consider a social cost function which is particularly meaningful in the setting of multifiber all-optical networks, where it captures the objective of fiber cost minimization. Additionally, we consider the two usual social cost functions (maximum and average player cost) and obtain improved bounds that could not have been derived using earlier results for the standard models for congestion and bottleneck games.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973)MATHCrossRefGoogle Scholar
  2. 2.
    Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14, 124–143 (1996)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Roughgarden, T.: Selfish routing and the price of anarchy. The MIT Press (2005)Google Scholar
  4. 4.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Nomikos, C., Pagourtzis, A., Zachos, S.: Routing and path multicoloring. Inf. Process. Lett. 80(5), 249–256 (2001)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Nomikos, C., Pagourtzis, A., Potika, K., Zachos, S.: Routing and wavelength assignment in multifiber WDM networks with non-uniform fiber cost. Computer Networks 50(1), 1–14 (2006)MATHCrossRefGoogle Scholar
  7. 7.
    Andrews, M., Zhang, L.: Complexity of wavelength assignment in optical network optimization. In: INFOCOM. IEEE (2006)Google Scholar
  8. 8.
    Andrews, M., Zhang, L.: Minimizing maximum fiber requirement in optical networks. J. Comput. Syst. Sci. 72(1), 118–131 (2006)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, STOC, pp. 67–73 (2005)Google Scholar
  10. 10.
    Li, G., Simha, R.: On the wavelength assignment problem in multifiber WDM star and ring networks. IEEE/ACM Trans. Netw. 9(1), 60–68 (2001)CrossRefGoogle Scholar
  11. 11.
    Margara, L., Simon, J.: Wavelength assignment problem on all-optical networks with k fibres per link. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 768–779. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Bampas, E., Pagourtzis, A., Pierrakos, G., Potika, K.: On a noncooperative model for wavelength assignment in multifiber optical networks. IEEE/ACM Trans. Netw. 20(4), 1125–1137 (2012)CrossRefGoogle Scholar
  13. 13.
    Busch, C., Magdon-Ismail, M.: Atomic routing games on maximum congestion. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 79–91. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Nash, J.: Non-cooperative games. The Annals of Mathematics 54(2), 286–295 (1951)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Banner, R., Orda, A.: Bottleneck routing games in communication networks. In: INFOCOM. IEEE (2006)Google Scholar
  16. 16.
    Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: Mitzenmacher, M. (ed.) STOC, pp. 513–522. ACM (2009)Google Scholar
  17. 17.
    Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The structure and complexity of Nash equilibria for a selfish routing game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Libman, L., Orda, A.: Atomic resource sharing in noncooperative networks. Telecommunication Systems 17(4), 385–409 (2001)MATHCrossRefGoogle Scholar
  19. 19.
    Kannan, R., Busch, C.: Bottleneck congestion games with logarithmic price of anarchy. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 222–233. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Harks, T., Hoefer, M., Klimm, M., Skopalik, A.: Computing pure Nash and strong equilibria in bottleneck congestion games. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part II. LNCS, vol. 6347, pp. 29–38. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Bilò, V., Moscardelli, L.: The price of anarchy in all-optical networks. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 13–22. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Bilò, V., Flammini, M., Moscardelli, L.: On Nash equilibria in non-cooperative all-optical networks. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 448–459. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Georgakopoulos, G.F., Kavvadias, D.J., Sioutis, L.G.: Nash equilibria in all-optical networks. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 1033–1045. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Milis, I., Pagourtzis, A., Potika, K.: Selfish routing and path coloring in all-optical networks. In: Janssen, J., Prałat, P. (eds.) CAAN 2007. LNCS, vol. 4852, pp. 71–84. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: Proceedings. 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 295–304 (October 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Evangelos Bampas
    • 1
  • Aris Pagourtzis
    • 1
  • George Pierrakos
    • 2
  • Vasilis Syrgkanis
    • 3
  1. 1.School of Elec. & Comp. EngineeringNational Technical University of AthensGreece
  2. 2.School of Electrical Engineering & Computer SciencesUC BerkeleyUSA
  3. 3.Computer Science Dept.Cornell UniversityUSA

Personalised recommendations