New Results on Stabbing Segments with a Polygon

  • José Miguel Díaz-Báñez
  • Matias Korman
  • Pablo Pérez-Lantero
  • Alexander Pilz
  • Carlos Seara
  • Rodrigo I. Silveira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7878)


We consider a natural variation of the concept of stabbing a segment by a simple polygon: a segment is stabbed by a simple polygon \(\mathcal{P}\) if at least one of its two endpoints is contained in \(\mathcal{P}\). A segment set S is stabbed by \(\mathcal{P}\) if every segment of S is stabbed by \(\mathcal{P}\). We show that if S is a set of pairwise disjoint segments, the problem of computing the minimum perimeter polygon stabbing S can be solved in polynomial time. We also prove that for general segments the problem is NP-hard. Further, an adaptation of our polynomial-time algorithm solves an open problem posed by Löffler and van Kreveld [Algorithmica 56(2), 236–269 (2010)] about finding a maximum perimeter convex hull for a set of imprecise points modeled as line segments.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arkin, E.M., Díaz-Báñez, J.M., Hurtado, F., Kumar, P., Mitchell, J.S.B., Palop, B., Pérez-Lantero, P., Saumell, M., Silveira, R.I.: Bichromatic 2-center of pairs of points. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 25–36. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Arkin, E.M., Dieckmann, C., Knauer, C., Mitchell, J.S., Polishchuk, V., Schlipf, L., Yang, S.: Convex transversals. Comput. Geom. (2012) (article in press)Google Scholar
  3. 3.
    Blömer, J.: Computing sums of radicals in polynomial time. In: FOCS 1991, pp. 670–677. IEEE Computer Society (1991)Google Scholar
  4. 4.
    Daescu, O., Ju, W., Luo, J.: NP-completeness of spreading colored points. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part I. LNCS, vol. 6508, pp. 41–50. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Díaz-Báñez, J.M., Korman, M., Pérez-Lantero, P., Pilz, A., Seara, C., Silveira, R.I.: New results on stabbing segments with a polygon. CoRR abs/1211.1490 (2012)Google Scholar
  6. 6.
    Dumitrescu, A., Jiang, M.: Minimum-perimeter intersecting polygons. Algorithmica 63(3), 602–615 (2012)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Goodrich, M.T., Snoeyink, J.: Stabbing parallel segments with a convex polygon. Computer Vision, Graphics, and Image Processing 49(2), 152–170 (1990)MATHCrossRefGoogle Scholar
  8. 8.
    Hassanzadeh, F., Rappaport, D.: Approximation algorithms for finding a minimum perimeter polygon intersecting a set of line segments. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 363–374. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Klincsek, G.T.: Minimal triangulations of polygonal domains. Ann. Discrete Math. 9, 121–123 (1980)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Löffler, M., van Kreveld, M.J.: Largest and smallest convex hulls for imprecise points. Algorithmica 56(2), 235–269 (2010)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Löffler, M., van Kreveld, M.J.: Largest bounding box, smallest diameter, and related problems on imprecise points. Comput. Geom. 43(4), 419–433 (2010)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Meijer, H., Rappaport, D.: Minimum polygon covers of parallel line segments. In: CCCG 1990, pp. 324–327 (1990)Google Scholar
  13. 13.
    Mukhopadhyay, A., Kumar, C., Greene, E., Bhattacharya, B.K.: On intersecting a set of parallel line segments with a convex polygon of minimum area. Inf. Proc. Lett. 105(2), 58–64 (2008)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Rappaport, D.: Minimum polygon transversals of line segments. Int. J. Comput. Geometry Appl. 5(3), 243–256 (1995)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • José Miguel Díaz-Báñez
    • 1
  • Matias Korman
    • 2
  • Pablo Pérez-Lantero
    • 3
  • Alexander Pilz
    • 4
  • Carlos Seara
    • 2
  • Rodrigo I. Silveira
    • 2
  1. 1.Dept. Matemática Aplicada IIUniversidad de SevillaSpain
  2. 2.Dept. Matemàtica Aplicada IIUniversitat Politècnica de CatalunyaSpain
  3. 3.Escuela de Ingeniería Civil en InformáticaUniversidad de ValparaísoChile
  4. 4.Institute for Software TechnologyGraz University of TechnologyAustria

Personalised recommendations