Solving k-Way Graph Partitioning Problems to Optimality: The Impact of Semidefinite Relaxations and the Bundle Method

  • Miguel F. Anjos
  • Bissan Ghaddar
  • Lena Hupp
  • Frauke Liers
  • Angelika Wiegele

Abstract

This paper is concerned with computing global optimal solutions for maximum k-cut problems. We improve on the SBC algorithm of Ghaddar, Anjos and Liers in order to compute such solutions in less time. We extend the design principles of the successful BiqMac solver for maximum 2-cut to the general maximum k-cut problem. As part of this extension, we investigate different ways of choosing variables for branching. We also study the impact of the separation of clique inequalities within this new framework and observe that it frequently reduces the number of subproblems considerably. Our computational results suggest that the proposed approach achieves a drastic speedup in comparison to SBC, especially when k=3. We also made a comparison with the orbitopal fixing approach of Kaibel, Peinhardt and Pfetsch. The results suggest that, while their performance is better for sparse instances and larger values of k, our proposed approach is superior for smaller k and for dense instances of medium size. Furthermore, we used CPLEX for solving the ILP formulation underlying the orbitopal fixing algorithm and conclude that especially on dense instances the new algorithm outperforms CPLEX by far.

References

  1. 1.
    Anjos, M.F., Wolkowicz, H.: Geometry of semidefinite max-cut relaxations via matrix ranks. J. Comb. Optim. 6(3), 237–270 (2002) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Anjos, M.F., Wolkowicz, H.: Strengthened semidefinite relaxations via a second lifting for the max-cut problem. Discrete Appl. Math. 119(1–2), 79–106 (2002) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Anjos, M.F., Liers, F., Pardella, G., Schmutzer, A.: Engineering branch-and-cut algorithms for the equicut problem. Cahier du GERAD G-2012-15, GERAD, Montreal, QC, Canada (2012). In: Fields Institute Communications on Discrete Geometry and Optimization. Springer, Berlin (2013, to appear) Google Scholar
  4. 4.
    Armbruster, M., Fügenschuh, M., Helmberg, C., Martin, A.L.: LP and SDP branch-and-cut algorithms for the minimum graph bisection problem: a computational comparison. Math. Program. Comput. 4(3), 275–306 (2012) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Barahona, F., Mahjoub, A.: On the cut polytope. Math. Program. 36, 157–173 (1986) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combinatorial optimization to statistical physics and circuit layout design. Oper. Res. 36, 493–513 (1988) MATHCrossRefGoogle Scholar
  7. 7.
    BiqMac solver. biqmac.uni-klu.ac.at. Accessed 07 June 2012
  8. 8.
    Borchers, B.: CSDP, a C library for semidefinite programming. Optim. Methods Softw. 11/12(1–4), 613–623 (1999) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Boros, E., Hammer, P.: The max-cut problem and quadratic 0–1 optimization: polyhedral aspects, relaxations and bounds. Ann. Oper. Res. 33, 151–180 (1991) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Brunetta, L., Conforti, M., Rinaldi, G.: A branch-and-cut algorithm for the equicut problem. Math. Program., Ser. B 78(2), 243–263 (1997) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Chopra, S., Rao, M.R.: The partition problem. Math. Program. 59, 87–115 (1993) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Chopra, S., Rao, M.R.: Facets of the k-partition problem. Discrete Appl. Math. 61, 27–48 (1995) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Conic Bundle Library. www-user.tu-chemnitz.de/~helmberg/ConicBundle/. Accessed 28 October 2011
  14. 14.
    de Klerk, E., Pasechnik, D., Warners, J.: On approximate graph colouring and max-k-cut algorithms based on the ϑ-function. J. Comb. Optim. 8(3), 267–294 (2004) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Deza, M., Laurent, M.: Geometry of Cuts and Metrics. Algorithms and Combinatorics. Springer, Berlin (1997) MATHGoogle Scholar
  16. 16.
    Deza, M., Grötschel, M., Laurent, M.: Complete descriptions of small multicut polytopes. In: Applied Geometry and Discrete Mathematics—The Victor Klee Festschrift, pp. 205–220, Am. Math. Soc., Providence (1991) Google Scholar
  17. 17.
    Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program., Ser. A, 91(2), 201–213 (2002) MATHCrossRefGoogle Scholar
  18. 18.
    Eisenblätter, A.: The semidefinite relaxation of the k-partition polytope is strong. In: Proceedings of the 9th International IPCO Conference on Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 2337, pp. 273–290. Springer, Berlin (2002) CrossRefGoogle Scholar
  19. 19.
    Elf, M., Jünger, M., Rinaldi, G.: Minimizing breaks by maximizing cuts. Oper. Res. Lett. 31(5), 343–349 (2003) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Fischer, I., Gruber, G., Rendl, F., Sotirov, R.: Computational experience with a bundle approach for semidefinite cutting plane relaxations of max-cut and equipartition. Math. Program., Ser. B 105(2–3), 451–469 (2006) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Frieze, A., Jerrum, M.: Improved approximation algorithms for max k-cut and max bisection. Algorithmica 18, 67–81 (1997) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Ghaddar, B., Anjos, M.F., Liers, F.: A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem. Ann. Oper. Res. 188(1), 155–174 (2011) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Goemans, M., Williamson, D.: New \(\frac{3}{4}\)-approximation algorithms for the maximum satisfiability problem. SIAM J. Discrete Math. 7(4), 656–666 (1994) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Helmberg, C.: A cutting plane algorithm for large scale semidefinite relaxations. In: The Sharpest Cut. MPS/SIAM Ser. Optim., pp. 233–256. SIAM, Philadelphia (2004) Google Scholar
  25. 25.
    Helmberg, C., Kiwiel, K.C.: A spectral bundle method with bounds. Math. Program., Ser. A 93(2), 173–194 (2002) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Helmberg, C., Rendl, F.: Solving quadratic (0,1)-problems by semidefinite programs and cutting planes. Math. Program., Ser. A 82(3), 291–315 (1998) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM J. Optim. 10(3), 673–696 (2000) (electronic) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Helmberg, C., Rendl, F., Vanderbei, R.J., Wolkowicz, H.: An interior-point method for semidefinite programming. SIAM J. Optim. 6(2), 342–361 (1996) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Kaibel, V., Peinhardt, M., Pfetsch, M.: Orbitopal fixing. In: Fischetti, M., Williamson, D. (eds.) Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 4513, pp. 74–88. Springer, Berlin (2007) CrossRefGoogle Scholar
  30. 30.
    Kaibel, V., Peinhardt, M., Pfetsch, M.: Orbitopal fixing. Discrete Optim. 8(4), 595–610 (2011) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Mathematics, vol. 1133. Springer, Berlin (1985) MATHGoogle Scholar
  32. 32.
    Laurent, M.: Semidefinite relaxations for max-cut. In: The Sharpest Cut. MPS/SIAM Ser. Optim., pp. 257–290. SIAM, Philadelphia (2004) Google Scholar
  33. 33.
    Laurent, M., Poljak, S.: On a positive semidefinite relaxation of the cut polytope. Linear Algebra Appl. 223/224, 439–461 (1995) MathSciNetCrossRefGoogle Scholar
  34. 34.
    Laurent, M., Poljak, S.: On the facial structure of the set of correlation matrices. SIAM J. Matrix Anal. Appl. 17(3), 530–547 (1996) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Lemaréchal, C.: Bundle methods in nonsmooth optimization. In: Nonsmooth Optimization, Proc. IIASA Workshop, Laxenburg, 1977. IIASA Proc. Ser., vol. 3, pp. 79–102. Pergamon, Oxford (1978) Google Scholar
  36. 36.
    Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Math. Program., Ser. B 69(1), 111–147 (1995) MATHCrossRefGoogle Scholar
  37. 37.
    Liers, F., Jünger, M., Reinelt, G., Rinaldi, G.: Computing exact ground states of hard Ising spin glass problems by branch-and-cut. In: New Optimization Algorithms in Physics, pp. 47–68. Wiley, New York (2004) Google Scholar
  38. 38.
    Liers, F., Lukic, J., Marinari, E., Pelissetto, A., Vicari, E.: Zero-temperature behavior of the random-anisotropy model in the strong-anisotropy limit. Phys. Rev. B 76(17), 174423 (2007) CrossRefGoogle Scholar
  39. 39.
    Lisser, A., Rendl, F.: Telecommunication clustering using linear and semidefinite programming. Math. Program. 95, 91–101 (2003) MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Margot, F.: Pruning by isomorphism in branch-and-cut. Math. Program., Ser. A, 94(1), 71–90 (2002) MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Margot, F.: Exploiting orbits in symmetric ILP. Math. Program., Ser. B, 98(1–3), 3–21 (2003) MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Max-k-cut instances. www.eng.uwaterloo.ca/~bghaddar/Publications.htm. Accessed 10 March 2011
  43. 43.
    Mitchell, J.: Branch-and-cut for the k-way equipartition problem. Technical report, Department of Mathematical Sciences, Rensselaer Polytechnic Institute (2001) Google Scholar
  44. 44.
    Mitchell, J.E.: Realignment in the National Football League: did they do it right? Nav. Res. Logist. 50(7), 683–701 (2003) MATHCrossRefGoogle Scholar
  45. 45.
    Palagi, L., Piccialli, V., Rendl, F., Rinaldi, G., Wiegele, A.: Computational approaches to max-cut. In: Handbook on Semidefinite, Conic and Polynomial Optimization. Internat. Ser. Oper. Res. Management Sci., vol. 166, pp. 821–847. Springer, New York (2012) CrossRefGoogle Scholar
  46. 46.
    Poljak, S., Rendl, F.: Solving the max-cut problem using eigenvalues. Discrete Appl. Math. 62(1–3), 249–278 (1995). doi:10.1016/0166-218X(94)00155-7 MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Math. Program. 121, 307–335 (2010) MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Rinaldi, G.: Rudy. www-user.tu-chemnitz.de/~helmberg/rudy.tar.gz. Accessed 07 April 2010
  49. 49.
    Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2(1), 121–152 (1992) MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Spin-glass server. www.informatik.uni-koeln.de/ls_juenger/research/sgs/index.html. Accessed 07 June 2012

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Miguel F. Anjos
    • 1
  • Bissan Ghaddar
    • 2
  • Lena Hupp
    • 3
  • Frauke Liers
    • 3
  • Angelika Wiegele
    • 4
  1. 1.Canada Research Chair in Discrete Nonlinear Optimization in Engineering, GERADÉcole Polytechnique de MontréalMontréalCanada
  2. 2.Centre for Operational Research and Analysis, Defence Research and Development CanadaDepartment of National DefenceOttawaCanada
  3. 3.Department MathematikFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  4. 4.Institut für MathematikAlpen-Adria-Universität KlagenfurtKlagenfurtAustria

Personalised recommendations