Advertisement

Tuning Parameters of Large Neighborhood Search for the Machine Reassignment Problem

  • Yuri Malitsky
  • Deepak Mehta
  • Barry O’Sullivan
  • Helmut Simonis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7874)

Abstract

Data centers are a critical and ubiquitous resource for providing infrastructure for banking, Internet and electronic commerce. One way of managing data centers efficiently is to minimize a cost function that takes into account the load of the machines, the balance among a set of available resources of the machines, and the costs of moving processes while respecting a set of constraints. This problem is called the machine reassignment problem. An instance of this online problem can have several tens of thousands of processes. Therefore, the challenge is to solve a very large sized instance in a very limited time. In this paper, we describe a constraint programming-based Large Neighborhood Search (LNS) approach for solving this problem. The values of the parameters of the LNS can have a significant impact on the performance of LNS when solving an instance. We, therefore, employ the Instance Specific Algorithm Configuration (ISAC) methodology, where a clustering of the instances is maintained in an offline phase and the parameters of the LNS are automatically tuned for each cluster. When a new instance arrives, the values of the parameters of the closest cluster are used for solving the instance in the online phase. Results confirm that our CP-based LNS approach, with high quality parameter settings, finds good quality solutions for very large sized instances in very limited time. Our results also significantly outperform the hand-tuned settings of the parameters selected by a human expert which were used in the runner-up entry in the 2012 EURO/ROADEF Challenge.

Keywords

Tuning Parameter Constraint Program Large Neighborhood Good Quality Solution Large Neighborhood Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adenso-Diaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental designs and local search. Oper. Res. 54(1), 99–114 (2006)zbMATHCrossRefGoogle Scholar
  2. 2.
    Ansótegui, C., Sellmann, M., Tierney, K.: A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 142–157. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Audet, C., Orban, D.: Finding optimal algorithmic parameters using derivative-free optimization. SIAM J. on Optimization 17(3), 642–664 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Coy, S.P., Golden, B.L., Runger, G.C., Wasil, E.A.: Using experimental design to find effective parameter settings for heuristics. Journal of Heuristics 7, 77–97 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  6. 6.
    Hamerly, G., Elkan, C.: Learning the k in k-means. In: Neural Information Processing Systems, p. 2003. MIT Press (2003)Google Scholar
  7. 7.
    Hoos, H.H.: Autonomous Search (2012)Google Scholar
  8. 8.
    Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 454–469. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: Isac - instance-specific algorithm configuration. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI. Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 751–756. IOS Press (2010)Google Scholar
  10. 10.
    Mehta, D., O’Sullivan, B., Simonis, H.: Comparing solution methods for the machine reassignment problem. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 782–797. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Nikolić, M., Marić, F., Janičić, P.: Instance-based selection of policies for SAT solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 326–340. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based reasoning in an algorithm portfolio for constraint solving. In: Proceedings of Artificial Intelligence and Cognitive Science, AICS 2008 (2008)Google Scholar
  13. 13.
    Petrucci, V., Loques, O., Mosse, D.: A dynamic configuration model for power-efficient virtualized server clusters. In: Proceedings of the 11th Brazilian Workshop on Real-Time and Embedded Systems (2009)Google Scholar
  14. 14.
    Pulina, L., Tacchella, A.: A multi-engine solver for quantified boolean formulas. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 574–589. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing. In: Proceedings of HotPower (2008)Google Scholar
  17. 17.
    Steinder, M., Whalley, I., Hanson, J.E., Kephart, J.O.: Coordinated management of power usage and runtime performance. In: NOMS, pp. 387–394. IEEE (2008)Google Scholar
  18. 18.
    Verma, A., Ahuja, P., Neogi, A.: pMapper: Power and migration cost aware application placement in virtualized systems. In: Issarny, V., Schantz, R. (eds.) Middleware 2008. LNCS, vol. 5346, pp. 243–264. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Xu, L., Hoos, H.H., Leyton-Brown, K.: Hydra: Automatically configuring algorithms for portfolio-based selection. In: Fox, M., Poole, D. (eds.) AAAI. AAAI Press (2010)Google Scholar
  20. 20.
    Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based algorithm selection for SAT. J. Artif. Int. Res. 32(1), 565–606 (2008)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yuri Malitsky
    • 1
  • Deepak Mehta
    • 1
  • Barry O’Sullivan
    • 1
  • Helmut Simonis
    • 1
  1. 1.Cork Constraint Computation CentreUniversity College CorkIreland

Personalised recommendations