Quantum logic aims to capture essential quantum mechanical structure in order-theoretic terms. The Achilles’ heel of quantum logic is the absence of a canonical description of composite systems, given descriptions of their components. We introduce a framework in which order-theoretic structure comes with a primitive composition operation. The order is extracted from a generalisation of C*-algebra that applies to arbitrary dagger symmetric monoidal categories, which also provide the composition operation. In fact, our construction is entirely compositional, without any additional assumptions on limits or enrichment. Interpreted in the category of finite-dimensional Hilbert spaces, it yields the projection lattices of arbitrary finite-dimensional C*-algebras. Interestingly, there are models that falsify standardly assumed correspondences, most notably the correspondence between noncommutativity of the algebra and nondistributivity of the order.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 415–425. IEEE Computer Society (2004), Extended version: arXiv:quant-ph/0402130Google Scholar
  2. 2.
    Abramsky, S., Heunen, C.: H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics. In: Abramsky, S., Mislove, M. (eds.) Clifford Lectures. Proceedings of Symposia in Applied Mathematics, vol. 71, pp. 1–24. American Mathematical Society (2012)Google Scholar
  3. 3.
    Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Annals of Mathematics 37, 823–843 (1936)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Boixo, S., Heunen, C.: Entangled and sequential quantum protocols with dephasing. Physical Review Letters 108, 120402 (2012)CrossRefGoogle Scholar
  5. 5.
    Carboni, A., Walters, R.F.C.: Cartesian bicategories I. Journal of Pure and Applied Algebra 49, 11–32 (1987)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chiribella, G., D’Ariano, G.M., Perinotti, P.: Informational derivation of quantum theory. Physical Review A 84(1), 012311 (2011)CrossRefGoogle Scholar
  7. 7.
    Coecke, B.: Axiomatic description of mixed states from Selinger’s CPM-construction. Electronic Notes in Theoretical Computer Science 210, 3–13 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Coecke, B.: The logic of quantum mechanics – take II (2012), arXiv:1204.3458Google Scholar
  9. 9.
    Coecke, B., Edwards, B., Spekkens, R.W.: Phase groups and the origin of non-locality for qubits. Electronic Notes in Theoretical Computer Science 270(2), 15–36 (2011), arXiv:1003.5005CrossRefMATHGoogle Scholar
  10. 10.
    Coecke, B., Heunen, C.: Pictures of complete positivity in arbitrary dimension. Quantum Phsyics and Logic, Electronic Proceedings in Theoretical Computer Science 95, 27–35 (2011)CrossRefMATHGoogle Scholar
  11. 11.
    Coecke, B., Heunen, C., Kissinger, A.: A category of classical and quantum channels. In: QPL 2012 (2012)Google Scholar
  12. 12.
    Coecke, B., Kissinger, A.: The compositional structure of multipartite quantum entanglement. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 297–308. Springer, Heidelberg (2010), Extended version: arXiv:1002.2540CrossRefGoogle Scholar
  13. 13.
    Coecke, B., Paquette, É.O.: Categories for the practicing physicist. In: Coecke, B. (ed.) New Structures for Physics. Lecture Notes in Physics, pp. 167–271. Springer (2011), arXiv:0905.3010Google Scholar
  14. 14.
    Coecke, B., Paquette, É.O., Pavlović, D.: Classical and quantum structuralism. In: Gay, S., Mackie, I. (eds.) Semantic Techniques in Quantum Computation, pp. 29–69. Cambridge University Press (2010), arXiv:0904.1997Google Scholar
  15. 15.
    Coecke, B., Pavlović, D., Vicary, J.: A new description of orthogonal bases. Mathematical Structures in Computer Science (2011) (to appear), arXiv:quant-ph/0810.1037Google Scholar
  16. 16.
    Coecke, B., Sadrzadeh, M., Clark, S.: Mathematical foundations for a compositional distributional model of meaning. Linguistic Analysis (2010)Google Scholar
  17. 17.
    Coecke, B., Spekkens, R.W.: Picturing classical and quantum Bayesian inference. Synthese 186, 651–696 (2012), arXiv:1102.2368.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Duncan, R., Perdrix, S.: Rewriting measurement-based quantum computations with generalised flow. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 285–296. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Faure, C.-A., Moore, D.J., Piron, C.: Deterministic evolutions and Schrödinger flows. Helvetica Physica Acta 68(2), 150–157 (1995)MathSciNetMATHGoogle Scholar
  20. 20.
    Foulis, D.J., Randall, C.H.: Operational statistics. I. Basic concepts. Journal of Mathematical Physics 13(11), 1667–1675 (1972)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. Journal of Mathematics and Mechanics 6, 885–893 (1957)MathSciNetMATHGoogle Scholar
  22. 22.
    Harding, J.: A link between quantum logic and categorical quantum mechanics. International Journal of Theoretical Physics 48(3), 769–802 (2009)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Harding, J.: Daggers, kernels, Baer *-semigroups, and orthomodularity. To appear in Journal of Philosophical Logic (2010)Google Scholar
  24. 24.
    Hardy, L.: Quantum theory from five reasonable axioms. arXiv:quant-ph/0101012 (2001)Google Scholar
  25. 25.
    Heunen, C., Contreras, I., Cattaneo, A.S.: Relative frobenius algebras are groupoids. Journal of Pure and Applied Algebra 217, 114–124 (2012)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Heunen, C., Jacobs, B.: Quantum logic in dagger kernel categories. Order 27(2), 177–212 (2010)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Horsman, C.: Quantum picturalism for topological cluster-state computing. New Journal of Physics 13, 095011 (2011), arXiv:1101.4722CrossRefGoogle Scholar
  28. 28.
    Jacobs, B.: Orthomodular lattices, foulis semigroups and dagger kernel categories. Logical Methods in Computer Science 6(2), 1 (2010)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Kelly, G.M., Laplaza, M.L.: Coherence for compact closed categories. Journal of Pure and Applied Algebra 19, 193–213 (1980)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Ludwig, G.: An Axiomatic Basis of Quantum Mechanics. 1. Derivation of Hilbert Space. Springer (1985)Google Scholar
  31. 31.
    Mackey, G.W.: The mathematical foundations of quantum mechanics. W. A. Benjamin, New York (1963)MATHGoogle Scholar
  32. 32.
    Ore, O.: Structures and group theory II. Duke Mathematical Journal 4(2), 247–269 (1938)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Pavlovic, D.: Quantum and classical structures in nondeterminstic computation. In: Bruza, P., Sofge, D., Lawless, W., van Rijsbergen, K., Klusch, M. (eds.) QI 2009. LNCS, vol. 5494, pp. 143–157. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  34. 34.
    Piron, C.: Axiomatique quantique. Helvetia Physica Acta 37, 439–468 (1964)MathSciNetMATHGoogle Scholar
  35. 35.
    Piron, C.: Foundations of quantum physics. W. A. Benjamin (1976)Google Scholar
  36. 36.
    Rédei, M.: Quantum Logic in Algebraic Approach. Kluwer (1998)Google Scholar
  37. 37.
    Selinger, P.: Dagger compact closed categories and completely positive maps. Electronic Notes in Theoretical Computer Science 170, 139–163 (2007)CrossRefMATHGoogle Scholar
  38. 38.
    Selinger, P.: Idempotents in dagger categories (extended abstract). Electronic Notes in Theoretical Computer Science 210, 107–122 (2008)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke, B. (ed.) New Structures for Physics. Lecture Notes in Physics, pp. 275–337. Springer (2011), arXiv:0908.3347Google Scholar
  40. 40.
    Solèr, M.P.: Characterization of Hilbert spaces by orthomodular spaces. Communications in Algebra 23(1), 219–243 (1995)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Stubbe, I., van Steirteghem, B.: Propositional systems, Hilbert lattices and generalized Hilbert spaces. In: Lehmann, D., Gabbay, D., Engesser, K. (eds.) Handbook Quantum Logic, pp. 477–524. Elsevier Publ. (2007), http://www.mat.uc.pt/~isar/PDF/HilbertLatticesELSEVIER.pdf
  42. 42.
    Vicary, J.: Categorical formulation of finite-dimensional quantum algebras. Communications in Mathematical Physics 304(3), 765–796 (2011)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Wigner, E.P.: Gruppentheorie. Friedrich Vieweg und Sohn (1931)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bob Coecke
    • 1
  • Chris Heunen
    • 1
  • Aleks Kissinger
    • 1
  1. 1.Department of Computer ScienceUniversity of OxfordUK

Personalised recommendations