Advertisement

Abstract

Four well-known methods for presenting semantics of a programming language are: denotational, deductive, operational, and algebraic. This essay presents algebraic laws for the structural features of a class of imperative programming languages which provide both sequential and concurrent composition; and it illustrates the way in which the laws are consistent with the other three semantic presentations of the same language. The exposition combines simplicity with generality by postponing consideration of the possibly more complex basic commands of particular programming languages. The proofs are given only as hints, but they are easily reconstructed, even with the aid of a machine.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. MIT Press (1977)Google Scholar
  2. 2.
    Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the ACM 12(10), 576–580 (1969)CrossRefzbMATHGoogle Scholar
  3. 3.
    O’Hearn, P.W.: Resources, concurrency and local reasoning. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 49–67. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Plotkin, G.D.: A structural approach to operational semantics. Technical Report DAIMI FN-19, Aarhus University (1981)Google Scholar
  5. 5.
    Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)CrossRefzbMATHGoogle Scholar
  6. 6.
    Hennessy, M.: Algebraic Theory of Processes. MIT Press (1988)Google Scholar
  7. 7.
    Baeten, J., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories of Communicating Processes. Cambridge Tracts in Theoretical Computer Science, vol. 50. Cambridge University Press (2009)Google Scholar
  8. 8.
    Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Englewood Cliffs (1976)zbMATHGoogle Scholar
  9. 9.
    Back, R.J., Wright, J.: Refinement calculus: a systematic introduction. Springer (1998)Google Scholar
  10. 10.
    Morgan, C.: Programming from specifications. Prentice-Hall, Inc. (1990)Google Scholar
  11. 11.
    Pratt, V.R.: Action logic and pure induction. In: van Eijck, J. (ed.) JELIA 1990. LNCS, vol. 478, pp. 97–120. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  12. 12.
    Hoare, C.A.R., Hayes, I.J., He, J., Morgan, C., Roscoe, A.W., Sanders, J.W., Sørensen, I.H., Spivey, J.M., Sufrin, B.: Laws of programming. Commun. ACM 30(8), 672–686 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall (1998)Google Scholar
  14. 14.
    Wehrman, I., Hoare, C.A.R., O’Hearn, P.W.: Graphical models of separation logic. Inf. Process. Lett. 109(17), 1001–1004 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hoare, T., Wickerson, J.: Unifying models of data flow. In: Software and Systems Safety - Specification and Verification, pp. 211–230 (2011)Google Scholar
  16. 16.
    Hoare, C.A.R., Hussain, A., Möller, B., O’Hearn, P.W., Petersen, R.L., Struth, G.: On locality and the exchange law for concurrent processes. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 250–264. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Hoare, T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra and its foundations. J. Log. Algebr. Program. 80(6), 266–296 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hoare, T., van Staden, S.: The laws of programming unify process calculi. In: Gibbons, J., Nogueira, P. (eds.) MPC 2012. LNCS, vol. 7342, pp. 7–22. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tony Hoare
    • 1
  1. 1.Microsoft ResearchCambridgeUnited Kingdom

Personalised recommendations