Genomic Evolution in Orobanchaceae



The broomrape family (Orobanchaceae) is an excellent model system for comparative evolutionary studies that focus on various genomic aspects associated with or being the result of the transition to heterotrophy. This chapter provides a family-wide summary of our current knowledge of the extraordinarily dynamic genomic evolution in Orobanchaceae. Several candidate genes that have been newly recruited in parasite-specific pathways have been identified by transcriptome sequencing. While little information is available on the evolution of mitochondrial genomes, studies of plastid genes and genomes of members of Orobanchaceae bring to light the first insights into the complex and differential patterns of reductive evolution of plastid chromosomes following the loss of photosynthesis. The chapter also discusses the need for large-scale transcriptome and genome sequencing to determine basic parasite-specific genetics and genome dynamics that may have potential for the development of novel strategies to control weedy Orobanchaceae.


Genome Size Plastid Genome Parasitic Plant Plastid Gene Reductive Evolution 



I thank Gerald Schneeweiss for the helpful comments on this manuscript and I am grateful to Kai Müller for critical discussion. I also thank Najibeh Ataei, Dietmar Quandt, and Hanna Weiss-Schneeweiss for sharing their unpublished data. Support from the Austrian Science Fund (FWF grant P19404 to G. Schneeweiss), the University of Vienna, and the German Academic Exchange Service (DAAD) for own research is highly appreciated.


  1. Acquisti C, Elser JJ, Kumar S (2009a) Ecological nitrogen limitation shapes the DNA composition of plant genomes. Mol Biol Evol 26:953–956PubMedGoogle Scholar
  2. Acquisti C, Kumar S, Elser JJ (2009b) Signatures of nitrogen limitation in the elemental composition of the proteins involved in the metabolic apparatus. Proc R Soc B 276:2605–2610PubMedGoogle Scholar
  3. Adams KL, Clements MJ, Vaughn JC (1998) The Peperomia mitochondrial coxI group I intron: timing of horizontal transfer and subsequent evolution of the intron. J Mol Evol 46:689–696PubMedGoogle Scholar
  4. Albach DC, Li H-Q, Zhao N, Jensen SR (2007) Molecular systematics and phytochemistry of Rehmannia (Scrophulariaceae). Biochem Syst Ecol 35:293–300Google Scholar
  5. Alkatib S, Fleischmann TT, Scharff LB, Bock R (2012) Evolutionary constraints on the plastid tRNA set decoding methionine and isoleucine. Nucleic Acids Res 40:6713–6724PubMedGoogle Scholar
  6. Aly R, Cholakh H, Joel DM, Leibman D, Steinitz B, Zelcer A, Naglis A, Yarden O, Gal-On A (2009) Gene silencing of mannose 6-phosphate reductase in the parasitic weed Orobanche aegyptiaca through the production of homologous dsRNA sequences in the host plant. Plant Biotechnol J 7:487–498PubMedGoogle Scholar
  7. Aly R, Hamamouch N, Abu-Nassar J, Wolf S, Joel DM, Eizenberg H, Kaisler E, Cramer C, Gal-On A, Westwood JH (2011) Movement of protein and macromolecules between host plants and the parasitic weed Phelipanche aegyptiaca Pers. Plant Cell Rep 30:2233–2241PubMedGoogle Scholar
  8. Bandaranayake PCG, Filappova T, Tomilov AA, Tomilova NB, Jamison-McClung D, Ngo Q, Inoue K, Yoder JI (2010) A single-electron reducing quinone oxidoreductase Is necessary to induce haustorium development in the root parasitic plant Triphysaria. Plant Cell 22:1404–1419PubMedGoogle Scholar
  9. Barker WR, Kiehn M, Vitek E (1988) Chromosome numbers in Australian Euphrasia (Scrophulariaceae). Plant Syst Evol 158:161–164Google Scholar
  10. Barkman TJ, Lim S-H, Salleh KM, Nais J (2004) Mitochondrial DNA sequences reveal the photosynthetic relatives of Rafflesia, the world’s largest flower. Proc Natl Acad Sci USA 101:787–792PubMedGoogle Scholar
  11. Barkman TJ, McNeal JR, Lim SH, Coat G, Croom HB, Young ND, dePamphilis CW (2007) Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evol Biol 7:248PubMedGoogle Scholar
  12. Bennett JR, Mathews S (2006) Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A. Am J Bot 93:1039–1051PubMedGoogle Scholar
  13. Berg S, Krause K, Krupinska K (2004) The rbcL genes of two Cuscuta species, C. gronovii and C. subinclusa, are transcribed by the nuclear-encoded plastid RNA polymerase (NEP). Planta 219:541–546PubMedGoogle Scholar
  14. Bergthorsson U, Richardson AO, Young GJ, Goertzen LR, Palmer JD (2004) Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci USA 101:17747–17752PubMedGoogle Scholar
  15. Botanga CJ, Timko MP (2005) Genetic structure and analysis of host and non-host interactions of Striga gesnerioides. Phytopathology 95:1166–1173PubMedGoogle Scholar
  16. Botanga CJ, Timko MP (2006) Phenetic relationships among different races of Striga gesnerioides (Willd.) Vatke from West Africa. Genome 49:1351–1365PubMedGoogle Scholar
  17. Botanga CJ, Kling JG, Berner DK, Timko MP (2002) Genetic variability of Striga asiatica (L.) Kuntz based on AFLP analysis and host-parasite interaction. Euphytica 128:375–388Google Scholar
  18. Boudreau E, Turmel M, Goldschmidt-Clermont M, Rochaix J-D, Sivan S, Michaels A, Leu S (1997) A large open reading frame (orf1995) in the chloroplast DNA of Chlamydomonas reinhardtii encodes an essential protein. Mol Gen Genet 253:649–653PubMedGoogle Scholar
  19. Braukmann T, Stefanović S (2012) Plastid genome evolution in mycoheterotrophic Ericaceae. Plant Mol Biol 79:5–20PubMedGoogle Scholar
  20. Castro M, Castro S, Loureiro J (2012) Genome size variation and incidence of polyploidy in Scrophulariaceae sensu lato from the Iberian Peninsula. AoB Plants 2012: pls037. doi: 10.1093/aobpla/pls037 PubMedGoogle Scholar
  21. Cho KY, Palmer JD (1999) Multiple acquisitions via horizontal transfer of a group I intron in the mitochondrial cox1 gene during evolution of the Araceae family. Mol Biol Evol 16:1155–1165PubMedGoogle Scholar
  22. Colwell AE (1994) Genome evolution in a non-photosynthetic plant, Conopholis americana. Ph.D. Thesis, Washington University. Division of Biology and Biomedical Sciences, St. Louis, WA, USAGoogle Scholar
  23. Cummings MP, Welschmeyer NA (1998) Pigment composition of putatively achlorophyllous angiosperms. Plant Syst Evol 210:105–111Google Scholar
  24. Cusimano N, Zhang L-B, Renner SS (2008) Reevaluation of the cox1 group I intron in Araceae and angiosperms indicates a history dominated by loss rather than horizontal transfer. Mol Biol Evol 25:265–276PubMedGoogle Scholar
  25. Davis C, Wurdack KJ (2004) Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 305:676–678PubMedGoogle Scholar
  26. Davis CC, Anderson WR, Wurdack KJ (2005) Gene transfer from a parasitic flowering plant to a fern. Proc R Soc B 272:2237–2242PubMedGoogle Scholar
  27. de Koning AP, Keeling PJ (2006) The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured. BMC Biol 4:12PubMedGoogle Scholar
  28. Delannoy E, Fujii S, des Francs CC, Brundrett M, Small I (2011) Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol Biol Evol 28:2077–2086PubMedGoogle Scholar
  29. Delavault PM, Thalouarn P (2002) The obligate root parasite Orobanche cumana exhibits several rbcL sequences. Gene 297:85–92PubMedGoogle Scholar
  30. Delavault PM, Sakanyan V, Thalouarn P (1995) Divergent evolution of two plastid genes, rbcL and atpB, in a non-photosynthetic parasitic plant. Plant Mol Biol 29:1071–1079PubMedGoogle Scholar
  31. Delavault PM, Russo NM, Lusson NA, Thalouarn P (1996) Organization of the reduced plastid genome of Lathraea clandestina, an achlorophyllous parasitic plant. Physiol Plant 96:674–682Google Scholar
  32. dePamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348:337–339PubMedGoogle Scholar
  33. dePamphilis CW, Young ND, Wolfe AD (1997) Evolution of plastid gene rps2 in a lineage of hemiparasitic and holoparasitic plants: many losses of photosynthesis and complex patterns of rate variation. Proc Natl Acad Sci USA 94:7367–7372PubMedGoogle Scholar
  34. Downie SR, Palmer JD (1992) Restriction site mapping of the chloroplast DNA inverted repeat – a molecular phylogeny of the Asteridae. Ann Mo Bot Gard 79:266–283Google Scholar
  35. Drescher A, Ruf S, Calsa T, Carrer H, Bock R (2000) The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J 22:97–104PubMedGoogle Scholar
  36. Duff RJ, Nickrent DL (1997) Characterization of mitochondrial small-subunit ribosomal RNAs from holoparasitic plants. J Mol Evol 45:631–639PubMedGoogle Scholar
  37. Ems SC, Morden CW, Dixon CK, Wolfe KH, dePamphilis CW, Palmer JD (1995) Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. Plant Mol Biol 29:721–733PubMedGoogle Scholar
  38. Estep MC, Gowda BS, Huang K, Timko MP, Bennetzen JL (2012) Genomic characterization for parasitic weeds of the genus Striga by sample sequence analysis. Plant Genome 5:30–41Google Scholar
  39. Fedorov AA (ed) (1969) Khromosomnye chisla tsetkovykh rasteny (Chromosome numbers of flowering plants). Izdatel’stvo Nauka, LeningradGoogle Scholar
  40. Fernandez-Aparicio M, Rubiales D, Bandaranayake PCG, Yoder J, Westwood J (2011) Transformation and regeneration of the holoparasitic plant Phelipanche aegyptiaca. Plant Methods 7:36PubMedGoogle Scholar
  41. Filipowicz N, Renner SS (2010) The worldwide holoparasitic Apodanthaceae confidently placed in the Cucurbitales by nuclear and mitochondrial gene trees. BMC Evol Biol 10:219PubMedGoogle Scholar
  42. Funk H, Berg S, Krupinska K, Maier U, Krause K (2007) Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii. BMC Plant Biol 7:45PubMedGoogle Scholar
  43. Goldblatt P, Johnson DE (1979) Index to plant chromosome numbers. Missouri Botanical Garden, St. Louis. Accessed August 2012
  44. Hanson L, McMahon KA, Johnson MAT, Bennett MD (2001) First nuclear DNA C-values for another 25 angiosperm families. Ann Bot 88:851–858Google Scholar
  45. Hanson L, Leitch IJ, Bennett MD (2002) Unpublished data from the Jodrell Laboratory, Royal Botanic Gardens, Kew. Accessed via the Kew C-Value Database at in August 2012Google Scholar
  46. He F, Zhang X, Hu J-Y, Turck F, Dong X, Goebel U, Borevitz JO, de Meaux J (2012) Widespread interspecific divergence in cis-regulation of transposable elements in the Arabidopsis genus. Mol Biol Evol 29:1081–1091PubMedGoogle Scholar
  47. Hjertson ML (1995) Taxonomy, phylogeny and biogeography of Lindenbergia (Scrophulariaceae). Bot J Linn Soc 119:265–321Google Scholar
  48. Honaas L, Wafula E, Yang Z, Der J, Wickett N, Altman N, Taylor C, Yoder J, Timko M, Westwood J, dePamphilis (2013) Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression. BMC Plant Biol 13:9Google Scholar
  49. Ishida JK, Yoshida S, Ito M, Namba S, Shirasu K (2011) Agrobacterium rhizogenes-mediated transformation of the parasitic plant Phtheirospermum japonicum. PLoS One 6(10):e25802. doi: 10.1371/journal.pone.0025802 PubMedGoogle Scholar
  50. Iwo GA, Husaini SWH, Olaniyan GO (1993) Cytological observations and distribution of Striga species in central part of Nigeria. Feddes Repertorium 104:497–501Google Scholar
  51. Knauf U, Hachtel W (2002) The genes encoding subunits of ATP synthase are conserved in the reduced plastid genome of the heterotrophic alga Prototheca wickerhamii. Mol Genet Genomics 267:492–497PubMedGoogle Scholar
  52. Knoop V, Unseld M, Marienfeld J, Brandt P, Sunkel S, Ullrich H, Brennicke A (1996) Copia-, gypsy- and LINE-like retrotransposon fragments in the mitochondrial genome of Arabidopsis thaliana. Genetics 142:579–585PubMedGoogle Scholar
  53. Knoop V, Volkmar U, Hecht J, Grewe F (2011) Mitochondrial genome evolution in the plant lineage. In: Kempten F (ed) Advances in plant biology – mitochondrial genomes. Springer Science & Business, New Yorlk, pp 3–29Google Scholar
  54. Kondo K, Segawa M, Musselman LJ, Mann WF (1981) Comparative ecological study of the chromosome races in certain root parasitic plants of the southeastern U.S.A. Bol Soc Broteriana 53:793–807Google Scholar
  55. Krause K (2011) Piecing together the puzzle of parasitic plant plastome evolution. Planta 234:647–656PubMedGoogle Scholar
  56. Krause K, Berg S, Krupinska K (2003) Plastid transcription in the holoparasitic plant genus Cuscuta: parallel loss of the rrn16 PEP-promoter and of the rpoA and rpoB genes coding for the plastid-encoded RNA polymerase. Planta 216:815–823PubMedGoogle Scholar
  57. Lagerkvist U (1978) “Two out of three”: an alternative method for codon reading. Proc Natl Acad Sci USA 75:1759–1762PubMedGoogle Scholar
  58. LeBlanc M, Kim G, Westwood JH (2012) RNA trafficking in parasitic plant systems. Front Plant Sci 3:203PubMedGoogle Scholar
  59. Lechat M-M, Pouvreau J-B, Péron T et al (2012) PrCYP707A1, an ABA catabolic gene, is a key component of Phelipanche ramosa seed germination in response to the strigolactone analogue GR24. J Exp Bot 63:5311–5322PubMedGoogle Scholar
  60. Leebens-Mack JH, dePamphilis CW (2002) Power analysis of tests for loss of selective constraint in cave crayfish and nonphotosynthetic plant lineages. Mol Biol Evol 19:1292–1302PubMedGoogle Scholar
  61. Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc Lond 82:651–663Google Scholar
  62. Leitch AR, Leitch IJ (2012) Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytol 194:629–646PubMedGoogle Scholar
  63. Lemaire B, Huysmans S, Smets E, Merckx V (2011) Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms. J Plant Res 124:561–576PubMedGoogle Scholar
  64. Logacheva MD, Schelkunov MI, Penin AA (2011) Sequencing and analysis of plastid genome in mycoheterotrophic orchid Neottia nidus-avis. Genome Biol Evol 3:1296–1303PubMedGoogle Scholar
  65. Lohan AJ, Wolfe KH (1998) A subset of conserved tRNA genes in plastid DNA of nongreen plants. Genetics 150:425–433PubMedGoogle Scholar
  66. Lohse M, Drechsel O, Bock R (2007) Organellar Genome DRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet 52:267–274PubMedGoogle Scholar
  67. Lusson NA, Delavault PM, Thalouarn P (1998) The rbcL gene from the non-photosynthetic parasite Lathraea clandestina is not transcribed by a plastid-encoded RNA polymerase. Curr Genet 34:212–215PubMedGoogle Scholar
  68. Manen J-F, Habashi C, Jeanmonod D, Park J-M, Schneeweiss GM (2004) Phylogeny and intraspecific variability of holoparasitic Orobanche (Orobanchaceae) inferred from plastid rbcL sequences. Mol Phylogenet Evol 33:482–500PubMedGoogle Scholar
  69. Martin NJ (1983) Nuclear DNA variation in the Australasian Loranthaceae. In: Calder M, Berhnhardt P (eds) Biology of mistletoes. Academic Press, New York, pp 277–293Google Scholar
  70. Matvienko M, Torres MJ, Yoder JI (2001) Transcriptional responses in the hemiparasitic plant Triphysaria versicolor to host plant signals. Plant Physiol 127:272–282PubMedGoogle Scholar
  71. McNeal JR, Arumugunathan K, Kuehl J, Boore J, dePamphilis C (2007a) Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae). BMC Biol 5:55PubMedGoogle Scholar
  72. McNeal JR, Kuehl J, Boore J, de Pamphilis C (2007b) Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta. BMC Plant Biol 7:57PubMedGoogle Scholar
  73. Moore DM (1982) Flora Europaea Check-List and chromosome index. Cambridge University Press, Cambridge UKGoogle Scholar
  74. Morden CW, Wolfe KH, dePamphilis CW, Palmer JD (1991) Plastid translation and transcription genes in a nonphotosynthetic plant – Intact, missing and pseudogenes. EMBO J 10:3281–3288PubMedGoogle Scholar
  75. Mower JP, Stefanovic S, Young GJ, Palmer JD (2004) Gene transfer from parasitic to host plants. Nature 432:165–166PubMedGoogle Scholar
  76. Mower JP, Stefanovic S, Hao W, Gummow J, Jain K, Ahmed D, Palmer J (2010) Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes. BMC Biol 8:150PubMedGoogle Scholar
  77. Nagl W, Fusenig HP (1979) Types of chromatin organization in plant nuclei. Plant Syst Evol Suppl 2:221–223Google Scholar
  78. Nickrent DL, Duff RJ (1996) Molecular studies or parasitic plants using ribosomal RNA. In: Moreno MT, Cubero JI, Berner D, Joel D, Musselman LJ, Parker C (eds) Advances in parasitic plant research. Junta de Andalucia, Dirección General de Investigación Agraria, Cordoba, Spain, pp 28–52Google Scholar
  79. Nickrent DL, García M (2009) On the brink of holoparasitism: plastome evolution in dwarf mistletoes (Arceuthobium, Viscaceae). J Mol Evol 68:603–615PubMedGoogle Scholar
  80. Nickrent DL, Blarer A, Qiu Y-L, Vidal-Russell R, Anderson FE (2004) Phylogenetic inference in Rafflesiales: the influence of rate heterogeneity and horizontal gene transfer. BMC Evol Biol 4:40PubMedGoogle Scholar
  81. Park J-M, Manen J-F, Schneeweiss GM (2007a) Horizontal gene transfer of a plastid gene in the non-photosynthetic flowering plants Orobanche and Phelipanche (Orobanchaceae). Mol Phyl Evol 43:974–985Google Scholar
  82. Park J-M, Schneeweiss GM, Weiss-Schneeweiss H (2007b) Diversity and evolution of Ty1-copia and Ty3-gypsy retroelements in the non-photosynthetic flowering plants Orobanche and Phelipanche (Orobanchaceae). Gene 387:75–86PubMedGoogle Scholar
  83. Piednoël M, Aberer AJ, Schneeweiss GM, Macas J, Novak P, Gundlach H, Temsch EM, Renner SS (2012) Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. Mol Biol Evol 29:3601–3611PubMedGoogle Scholar
  84. Randle CP, Wolfe AD (2005) The evolution and expression of RBCL in holoparasitic sister-genera Harveya and Hyobanche (Orobanchaceae). Am J Bot 92:1575–1585PubMedGoogle Scholar
  85. Renner SS, Bellot S (2012) Horizontal gene transfer in eukaryotes: fungi-to-plant and plant-to-plant transfers of organellar DNA. In: Bock R, Knoop V (eds) Genomics of chloroplasts and mitochondria. Springer, Heidelberg, pp 223–235Google Scholar
  86. Rogalski M, Karcher D, Bock R (2008) Superwobbling facilitates translation with reduced tRNA sets. Nat Struct Mol Biol 15:192–198PubMedGoogle Scholar
  87. Sanchez-Puerta MV, Cho Y, Mower JP, Alverson AJ, Palmer JD (2008) Frequent, phylogenetically local horizontal transfer of the cox1 group I intron in flowering plant mitochondria. Mol Biol Evol 25:1762–1777PubMedGoogle Scholar
  88. Schäferhoff B, Fleischmann A, Fischer E, Albach D, Borsch T, Heubl G, Müller KF (2010) Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences. BMC Evol Biol 10:352PubMedGoogle Scholar
  89. Schneeweiss GM, Palomeque T, Colwell AE, Weiss-Schneeweiss H (2004) Chromosome numbers and karyotype evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. Am J Bot 91:439–448PubMedGoogle Scholar
  90. Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y (2004) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–782PubMedGoogle Scholar
  91. Seif E, Leigh J, Liu Y, Roewer I, Forget L, Lang BF (2005) Comparative mitochondrial genomics in zygomycetes: bacteria-like RNase P RNAs, mobile elements and a close source of the group I intron invasion in angiosperms. Nucleic Acids Res 33:734–744PubMedGoogle Scholar
  92. Shinozaki K, Ohme M, Tanaka M et al (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049PubMedGoogle Scholar
  93. Takagi K, Okazawa A, Wada Y, Mongkolchaiyaphruek A, Fukusaki E, Yoneyama K, Takeuchi Y, Kobayashi A (2009) Unique phytochrome responses of the holoparasitic plant Orobanche minor. New Phytol 182:965–974PubMedGoogle Scholar
  94. Tank DC, Egger JM, Olmstead RG (2009) Phylogenetic classification of subtribe Castillejinae (Orobanchaceae). Syst Bot 34:182–197Google Scholar
  95. Tolbert NE (1997) The C2 oxidative photosynthetic carbon cycle. Annu Rev Plant Physiol Plant Mol Biol 48:1–25PubMedGoogle Scholar
  96. Tomilov AA, Tomilova NB, Yoder JI (2007) Agrobacterium tumefaciens and Agrobacterium rhizogenes transformed roots of the parasitic plant Triphysaria versicolor retain parasitic competence. Planta 225:1059–1071PubMedGoogle Scholar
  97. Tomilov AA, Tomilova NB, Wroblewski T, Michelmore R, Yoder JI (2008) Trans-specific gene silencing between host and parasitic plants. Plant J 56:389–397PubMedGoogle Scholar
  98. Trakulnaleamsai C, Okazawa A, An C-I, Kajiyama S, Fukusaki E, Yoneyama K, Takeuchi Y, Kobayashi A (2005) Isolation and characterization of a cDNA encoding phytochrome A in the non-photosynthetic parasitic plant, Orobanche minor Sm. Biosci Biotechnol Biochem 69:71–78PubMedGoogle Scholar
  99. Vaughn JC, Mason MT, Sper-Whitis GL, Kuhlman P, Palmer JD (1995) Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric coxI gene of Peperomia. J Mol Evol 41:563–572PubMedGoogle Scholar
  100. Weiss-Schneeweiss H, Greilhuber J, Schneeweiss GM (2006) Genome size evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. Am J Bot 93:148–156Google Scholar
  101. Westwood JH, Yoder JI, Timko MP, dePamphilis CW (2010) The evolution of parasitism in plants. Trends Plant Sci 15:227–235PubMedGoogle Scholar
  102. Westwood JH, dePamphilis CW, Das M, Fernández-Aparicio M, Honaas LA, Timko MP, Wafula EK, Wickett NJ, Yoder JI (2012) The Parasitic Plant Genome Project: new tools for understanding the biology of Orobanche and Striga. Weed Sci 60:295–306Google Scholar
  103. Wickett NJ, Zhang Y, Hansen SK, Roper JM, Kuehl JV, Plock SA, Wolf PG, dePamphilis CW, Boore JL, Goffinet B (2008) Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis. Mol Biol Evol 25:393–401PubMedGoogle Scholar
  104. Wickett NJ, Honaas LA, Wafula EK, Das M, Huang K, Wu B, Landherr L, Timko MP, Yoder J, Westwood JH, dePamphilis CW (2011) Transcriptomes of the parasitic plant family Orobanchaceae reveal surprising conservation of chlorophyll synthesis. Curr Biol 21:2098–2104PubMedGoogle Scholar
  105. Wimpee CF, Wrobel R, Garvin D (1991) A divergent plastid genome in Conopholis americana, an achlorophyllous parasitic plant. Plant Mol Biol 17(166):161PubMedGoogle Scholar
  106. Wimpee CF, Morgan R, Wrobel RL (1992) Loss of transfer RNA genes from the plastid 16S–23S ribosomal RNA gene spacer in a parasitic plant. Curr Genet 21:417–422PubMedGoogle Scholar
  107. Wolfe KH (1994) Similarity between putative ATP-binding sites in land plant plastid ORF2280 proteins and the FtsH/CDC48 family of ATPases. Curr Genet 25:379–383PubMedGoogle Scholar
  108. Wolfe AD, dePamphilis CW (1997) Alternate paths of evolution for the photosynthetic gene rbcL in four nonphotosynthetic species of Orobanche. Plant Mol Biol 33:965–977PubMedGoogle Scholar
  109. Wolfe AD, dePamphilis CW (1998) The effect of relaxed functional constraints on the photosynthetic gene rbcL in photosynthetic and nonphotosynthetic parasitic plants. Mol Biol Evol 15:1243–1258PubMedGoogle Scholar
  110. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058PubMedGoogle Scholar
  111. Wolfe KH, Morden CW, Ems SC, Palmer JD (1992a) Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. J Mol Evol 35:304–317PubMedGoogle Scholar
  112. Wolfe KH, Morden CW, Palmer JD (1992b) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89:10648–10652PubMedGoogle Scholar
  113. Won H, Renner SS (2003) Horizontal gene transfer from flowering plants to Gnetum. Proc Natl Acad Sci USA 100:10824–10829PubMedGoogle Scholar
  114. Wood TE, Takebayashic N, Abrahamsen MS, Mayrose I, Greenspoond PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci USA 106:13875–13879PubMedGoogle Scholar
  115. Xi Z, Bradley R, Wurdack K, Wong KM, Sugumaran M, Bomblies K, Rest J, Davis C (2012) Horizontal transfer of expressed genes in a parasitic flowering plant. BMC Genomics 13:227PubMedGoogle Scholar
  116. Yoshida S, Ishida JK, Kamal N, Ali A, Namba S, Shirasu K (2010) A full-length enriched cDNA library and expressed sequence tag analysis of the parasitic weed, Striga hermonthica. BMC Plant Biol 10:55PubMedGoogle Scholar
  117. Young ND, dePamphilis CW (2005) Rate variation in parasitic plants: correlated and uncorrelated patterns among plastid genes of different function. BMC Evol Biol 5:16PubMedGoogle Scholar
  118. Zonneveld BJM (2010) New record holders for maximum genome size in Eudicots and Monocots. J Bot 2010:4 pagesGoogle Scholar
  119. Zonneveld BJM, Leitch IJ, Bennett MD (2005) First nuclear DNA amounts in more than 300 angiosperms. Ann Bot 96:229–244PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department for Systematic and Evolutionary BotanyUniversity of ViennaViennaAustria
  2. 2.Institute for Evolution and BiodiversityUniversity of MuensterMuensterGermany

Personalised recommendations