Advertisement

Phylogenetic Relationships and Evolutionary Trends in Orobanchaceae

  • Gerald M. Schneeweiss
Chapter

Abstract

Molecular analyses of the last decade have greatly changed our understanding of phylogenetic relationships of Orobanchaceae. This family now includes all photosynthetic and non-photosynthetic parasitic members of former Scrophulariaceae and Orobanchaceae, in addition to a single non-parasitic genus. Although phylogenetic relationships among genera are not fully understood, there is consensus recognition of several major clades. However, due to the lack of correspondence with traditionally defined higher taxa, morphological characterization of these clades and identification of their synapomorphies are still largely lacking. Molecular data support phylogenetic placement of the major weedy species as suggested by morphology, but so far failed in identifying their most closely related wild congeners. A sound phylogenetic framework forms the necessary basis for studying evolutionary trends connected to parasitism, and a few trends are briefly discussed, including host range, genome evolution, horizontal gene transfer and association of polyploidy with holoparasitism.

Keywords

Host Range Horizontal Gene Transfer Molecular Data Plastid Genome Wide Host Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Two anonymous reviewers are acknowledged for their cogent comments and suggestions. My research on Orobanche and related genera would not have been possible without the help of numerous colleagues. My work is financially supported by the Austrian Science Foundation (FWF grants P14352, P19404) and the Faculty of Life Sciences of the University of Vienna.

References

  1. Albach DC, Yan K, Jensen SR, Li H-Q (2009) Phylogenetic placement of Triaenophora (formerly Scrophulariaceae) with some implications for the phylogeny of Lamiales. Taxon 58:749–756Google Scholar
  2. Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434PubMedGoogle Scholar
  3. Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121Google Scholar
  4. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3(10):e3376. doi: 10.1371/journal.pone.0003376 PubMedGoogle Scholar
  5. Barkman TJ, McNeal JR, Lim SH, Coat G, Croom HB, Young ND, dePamphilis CW (2007) Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evol Biol 7:248. doi: 10.1186/1471-2148-7-248 PubMedGoogle Scholar
  6. Beck-Mannagetta G (1890) Monographie der Gattung Orobanche. Theodor Fischer, CasselGoogle Scholar
  7. Beck-Mannagetta G (1891) Orobanchaceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten, insbesondere den Nutzpflanzen. Wilhelm Engelmann, Leipzig, pp 123–132Google Scholar
  8. Beck-Mannagetta G (1930) Orobanchaceae. In: Engler A (ed) Das Pflanzenreich. Regni vegetabilis conspectus, 4, vol 261. Wilhelm Engelmann, Leipzig, pp 1–348Google Scholar
  9. Bellini R (1907) Criteri per una nuova classificazione della Personatae (Scrophulariaceae et Rhinantaceae [sic]). Ann Bot 6:131–145Google Scholar
  10. Benharrat H, Veronesi C, Theodet C, Thalouarn P (2002) Orobanche species and population discrimination using intersimple sequence repeat (ISSR). Weed Res 42:470–475Google Scholar
  11. Bennett J, Mathews S (2006) Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A. Am J Bot 93:1039–1051PubMedGoogle Scholar
  12. Bentham G (1876) Ordo CXV. Scrophularineae. Ordo CXVI. Orobanchaceae. In: Bentham G, Hooker JD (eds) Genera plantarum, vol 2. Reeve, London, pp 913–980, 980–986Google Scholar
  13. Bock R (2010) The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci 15:11–22PubMedGoogle Scholar
  14. Boeshore I (1920) The morphological continuity of Scrophulariaceae and Orobanchaceae. Contrib Bot Lab Univ Pennsylv 5:139–177Google Scholar
  15. Bolliger M (1996) Monographie der Gattung Odontites (Scrophulariaceae) sowie der verwandten Gattungen Macrosyringion, Odontitella, Bornmuellerantha und Bartsiella. Willdenowia 26:37–168Google Scholar
  16. Botanga CJ, Timko MP (2006) Phenetic relationships among different races of Striga gesnerioides (Willd.) Vatke from West Africa. Genome 49:1351–1365PubMedGoogle Scholar
  17. Botanga CJ, Kling JG, Berner DK, Timko MP (2002) Genetic variability of Striga asiatica (L.) Kuntz based on AFLP analysis and host-parasite interaction. Euphytica 128:375–388Google Scholar
  18. Brault M, Betsou F, Jeune B, Tuquet C, Sallé G (2007) Variability of Orobanche ramosa populations in France as revealed by cross infestations and molecular markers. Environ Exp Bot 61:272–280Google Scholar
  19. Bremer B, Bremer K, Heidari N, Erixon P, Olmstead RG, Anderberg AA, Källersjö M, Barkhordarian E (2002) Phylogenetics of asteroids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. Mol Phylogenet Evol 24:274–301PubMedGoogle Scholar
  20. Carlón L, Gómez Casares G, Laínz M, Moreno Moral G, Sánchez Pedraja Ó, Schneeweiss GM (2005) Más, a propósito de algunas Orobanche L. y Phelipanche Pomel (Orobanchaceae) del oeste del Paleártico. Doc Jardin Bot Atl Gijón 3:1–71Google Scholar
  21. Carlón L, Gómez Casares G, Laínz M, Moreno Moral G, Sánchez Pedraja Ó, Schneeweiss GM (2008) Más, a propósito de algunas Phelipanche Pomel, Boulardia F. W. Schultz y Orobanche L. (Orobanchaceae) del oeste del Paleártico. Doc Jardin Bot Atl Gijón 6:1–128Google Scholar
  22. Castillejo MA, Fernández-Aparicio M, Satovic Z, Rubiales D (2009) Comparative proteomic analysis of Orobanche and Phelipanche species inferred from seed proteins. Weed Res 49(Supp 1):81–87Google Scholar
  23. Davis CC, Wurdack KJ (2004) Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 305:676–678PubMedGoogle Scholar
  24. Davis CC, Fritsch PW, Li J, Donoghue MJ (2002) Phylogeny and biogeography of Cercis (Fabaceae): evidence from nuclear ribosomal ITS and chloroplast ndhF sequence data. Syst Bot 27:289–302Google Scholar
  25. Demissew S (2004) Cyclocheilaceae. In: Kadereit JW (ed) Flowering plants, dicotyledons, Lamiales (except Acanthaceae including Avicenniaceae), vol 7, The families and genera of vascular plants. Springer, Berlin, pp 60–62Google Scholar
  26. dePamphilis CW (1995) Genes and genomes. In: Press MC, Graves JD (eds) Parasitic plants. Chapman & Hall, London, pp 177–205Google Scholar
  27. dePamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348:337–339PubMedGoogle Scholar
  28. dePamphilis CW, Young ND, Wolfe AD (1997) Evolution of plastid gene rps2 in a lineage of hemiparasitic and holoparasitic plants: many losses of photosynthesis and complex patterns of rate variation. Proc Natl Acad Sci USA 94:7367–7372PubMedGoogle Scholar
  29. Domina G, Colombo P (2005) Seed micromorphology and its variation in Sicilian Orobanche (Magnoliopsida). Flora Mediterr 15:99–107Google Scholar
  30. Dong LN, Wortley AH, Wang H, Li DZ, Lu L (2011) Efficiency of DNA barcodes for species delimitation: a case in Pterygiella Oliv. (Orobanchaceae). J Syst Evol 49:189–202Google Scholar
  31. Dong LN, Wang H, Wortley AH, Lu L, Li DZ (2013) Phylogenetic relationships in the Pterygiella complex (Orobanchaceae) inferred from molecular and morphological evidence. Bot J Linn Soc 171:491–507Google Scholar
  32. Dube MP, Belzile FJ (2010) Low genetic variability of Striga gesnerioides populations parasitic on cowpea might be explained by a recent origin. Weed Res 50:493–502Google Scholar
  33. Emerson KJ, Merz CR, Catchen JM, Hohenlohe PA, Cresko WA, Bradshaw WE, Holzapfel CM (2010) Resolving postglacial phylogeography using high-throughput sequencing. Proc Natl Acad Sci USA 107:16196–16200PubMedGoogle Scholar
  34. Ernst WR (1972) Floral morphology and systematics of Lamourouxia (Scrophulariaceae: Rhinanthoideae). Smithsonian Contrib Bot 6:1–63Google Scholar
  35. Fedorov AA (1969) Khromosomiye chisla tsvetkovykh rastenij. Nauka, LeningradGoogle Scholar
  36. Filipowicz N, Renner SS (2010) The worldwide holoparasitic Apodanthaceae confidently placed in the Cucurbitales by nuclear and mitochondrial gene trees. BMC Evol Biol 10:219. doi: 10.1186/1471-2148-10-219 PubMedGoogle Scholar
  37. Fischer E (2004) Scrophulariaceae. In: Kadereit JW (ed) Flowering plants, dicotyledons, Lamiales (except Acanthaceae including Avicenniaceae), vol 7, The families and genera of vascular plants. Springer, Berlin, pp 333–432Google Scholar
  38. Fischer E, Schäferhoff B, Müller KF (2012) The new monotypic genus Bardotia (Orobanchaceae) from Madagascar and remarks on the phylogenetic relationships of the African and Madagascan genera Parastriga, Radamaea, Rhamphicarpa and Sieversandreas. Phytotaxa 46:19–33Google Scholar
  39. Gagne G, Roeckel-Drevet P, Grezes-Besset B, Shindrova P, Ivanov P, Grand-Ravel C, Vear F, Charmet G, Nicolas P (2000) Amplified fragment length polymorphism (AFLP) as suitable markers to study Orobanche cumana genetic diversity. J Phytopathol 148:457–459Google Scholar
  40. Gethi JG, Smith ME, Mitchell SE, Kresovich S (2005) Genetic diversity of Striga hermonthica and Striga asiatica populations in Kenya. Weed Res 45:64–73Google Scholar
  41. Gilli A (1968) Necranthus: a new genus of Orobanchaceae from Turkey. Notes R Bot Gard Edinb 28:297–298Google Scholar
  42. Gussarova G, Popp M, Vitek E, Brochmann C (2008) Molecular phylogeny and biogeography of the bipolar Euphrasia (Orobanchaceae): recent radiations in an old genus. Mol Phylogenet Evol 48:444–460PubMedGoogle Scholar
  43. Hallier H (1903) Ueber die Abgrenzung und Verwandtschaft der einzelnen Sippen bei den Scrophularineen. Bull l’Herbier Boissier II 3:181–207Google Scholar
  44. Harley RM (2004) Nesogenaceae. In: Kadereit JW (ed) Flowering plants, dicotyledons, Lamiales (except Acanthaceae including Avicenniaceae), vol 7, The families and genera of vascular plants. Springer, Berlin, pp 293–295Google Scholar
  45. Heide-Jørgensen HS (2008) Parasitic flowering plants. Brill, LeidenGoogle Scholar
  46. Hjertson ML (1995) Taxonomy, phylogeny and biogeography of Lindenbergia (Scrophulariaceae). Bot J Linn Soc 119:265–321Google Scholar
  47. Holub J (1977) New names in Phanerogamae 6. Folia Geobot Phytotax 12:417–432Google Scholar
  48. Holub J (1990) Some taxonomic and nomenclatural changes within Orobanche s. l. (Orobanchaceae). Preslia 62:193–198Google Scholar
  49. Huyse T, Poulin R, Théron A (2005) Speciation in parasites: a population genetics approach. Trends Parasitol 21:469–475PubMedGoogle Scholar
  50. Joel DM (2009) The new nomenclature of Orobanche and Phelipanche. Weed Res 49(Supp 1):6–7Google Scholar
  51. Joel DM, Portnoy V, Katzir N (1996) Identification of single tiny seeds of Orobanche using RAPD analysis. Plant Mol Biol Rep 14:243–248Google Scholar
  52. Joel DM, Portnoy VH, Katzir N (1998) Use of DNA fingerprinting for soil-borne seed identification. Aspects Appl Biol 51:23–27Google Scholar
  53. Kuijt J (1969) The biology of parasitic flowering plants. University of California Press, BerkeleyGoogle Scholar
  54. Manen JF, Habashi C, Jeanmonod D, Park JM, Schneeweiss GM (2004) Phylogeny and intraspecific variability of holoparasitic Orobanche (Orobanchaceae) inferred from plastid rbcL sequences. Mol Phylogenet Evol 33:482–500PubMedGoogle Scholar
  55. Marais W (1981) Two new gamopetalous families, Cyclocheilaceae and Nesogenaceae, for extra-Australian ‘Dicrastylidaceae’. Kew Bull 35:797–812Google Scholar
  56. McNeal JR, Bennett JR, Wolfe AD, Mathews S (2013) Phylogeny and origins of holoparasitism in Orobanchaceae. Am J Bot 100:971–983PubMedGoogle Scholar
  57. Mildbraed J (1930) New species and a new genus from East Africa. J Arnold Arboretum 11:50–55Google Scholar
  58. Minkin JP, Eshbaugh WH (1989) Pollen morphology of the Orobanchaceae and rhinanthoid Scrophulariaceae. Grana 28:1–18Google Scholar
  59. Mohamed KI, Mussleman LJ, Aigbokhan EI, Berner DK (1996) Evolution and taxonomy of agronomically important Striga species. In: Moreno MT, Cubero JI, Berner D, Joel D, Musselman LJ, Parker C (eds) Advances in parasitic plant research. Consejería de Agricultura y Pesca, Junta de Andalucía, Cordoba, pp 53–73Google Scholar
  60. Mohamed KI, Musselman LJ, Riches CR (2001) The genus Striga (Scrophulariaceae) in Africa. Ann Mo Bot Gard 88:60–103Google Scholar
  61. Molau U (1990) The genus Bartsia (Scrophulariaceae-Rhinanthoideae). Opera Bot 102:1–99Google Scholar
  62. Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE (2010) Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci USA 107:4623–4628PubMedGoogle Scholar
  63. Morawetz JJ, Randle CP (2010) The status of Harveya alba (Orobanchaceae). Kew Bull 65:1–2Google Scholar
  64. Morawetz JJ, Wolfe AD (2009) Assessing the monophyly of Alectra and its relationship to Melasma (Orobanchaceae). Syst Bot 34:561–569Google Scholar
  65. Morawetz JJ, Randle CP, Wolfe AD (2010) Phylogenetic relationships within the tropical clade of Orobanchaceae. Taxon 59:416–426Google Scholar
  66. Mower JP, Stefanović S, Young GJ, Palmer JD (2004) Gene transfer from parasitic to host plants. Nature 432:165–166PubMedGoogle Scholar
  67. Neel MC, Cummings MP (2004) Section-level relationships of North American Agalinis (Orobanchaceae) based on DNA sequence analysis of three chloroplast gene regions. BMC Evol Biol 4:15. doi: 10.1186/1471-2148-4-15 PubMedGoogle Scholar
  68. Nickrent DL (2012) The parasitic plant connection. http://www.parasiticplants.siu.edu. Cited 5 Oct 2012
  69. Nickrent DL, Duff RJ, Colwell AE, Wolfe AD, Young ND, Steiner KE, dePamphilis CW (1998) Molecular phylogenetic and evolutionary studies of parasitic plants. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II. Kluwer, Boston, pp 211–241Google Scholar
  70. Nickrent DL, Der JP, Anderson FE (2005) Discovery of the photosynthetic relatives of the “Maltese mushroom” Cynomorium. BMC Evol Biol 5:38. doi: 10.1186/1471-2148-5-38 PubMedGoogle Scholar
  71. Nickrent DL, Malécot V, Vidal-Russell R, Der JP (2010) A revised classification of Santalales. Taxon 59:538–558Google Scholar
  72. Novopokrovskij IV, Cvelev NN (1958) Semejstvo Orobanchaceae. In: Shishkin BK, Bobov EG (eds) Flora SSSR, vol 23. Akad Nauk SSSR, Moscow, pp 19–115Google Scholar
  73. Olmstead RG, dePamphilis CW, Wolfe AD, Young ND, Elisons WJ, Reeves PA (2001) Disintegration of the Scrophulariaceae. Am J Bot 88:348–361PubMedGoogle Scholar
  74. Oxelman B, Kornhall P, Olmstead RG, Bremer B (2005) Further disintegration of Scrophulariaceae. Taxon 54:411–425Google Scholar
  75. Paran I, Gidoni D, Jacobsohn R (1997) Variation between and within broomrape (Orobanche) species revealed by RAPD markers. Heredity 78:68–74PubMedGoogle Scholar
  76. Park JM, Manen JF, Schneeweiss GM (2007a) Horizontal gene transfer of a plastid gene in the non-photosynthetic flowering plants Orobanche and Phelipanche (Orobanchaceae). Mol Phylogenet Evol 43:974–985PubMedGoogle Scholar
  77. Park JM, Schneeweiss GM, Weiss-Schneeweiss H (2007b) Diversity and evolution of Ty1-copia and Ty3-gypsy retroelements in the non-photosynthetic flowering plants Orobanche and Phelipanche (Orobanchaceae). Gene 387:75–86PubMedGoogle Scholar
  78. Park JM, Manen JF, Colwell AE, Schneeweiss GM (2008) A plastid gene phylogeny of the non-photosynthetic parasitic Orobanche (Orobanchaceae) and related genera. J Plant Res 121:365–376PubMedGoogle Scholar
  79. Parker C (2009) Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag Sci 65:453–459PubMedGoogle Scholar
  80. Parker C, Riches CR (1993) Parasitic weeds of the world. Biology and control. CAB, WallingfordGoogle Scholar
  81. Pennell FW (1928) Agalinis and allies in North America – I. Proc Acad Nat Sci Phila 80:339–449Google Scholar
  82. Pettengill JB, Neel MC (2008) Phylogenetic patterns and conservation among North American members of the genus Agalinis (Orobanchaceae). BMC Evol Biol 8:264. doi: 10.1186/1471-2148-8-264 PubMedGoogle Scholar
  83. Piednoël M, Aberer AJ, Schneeweiss GM, Macas J, Novak P, Gundlach H, Temsch EM, Renner SR (2012) Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. Mol Biol Evol 29:3601–3611PubMedGoogle Scholar
  84. Plaza L, Fernández I, Juan R, Pastor J, Pujadas A (2004) Micromorphological studies on seeds of Orobanche species from the Iberian Peninsula and the Balearic Islands, and their systematic significance. Ann Bot 94:167–178PubMedGoogle Scholar
  85. Portnoy VH, Katzir N, Joel DM (1997) Species identification of soil-borne Orobanche seeds by DNA fingerprinting. Pestic Biochem Phys 58:49–54Google Scholar
  86. Pujadas Salvà AJO (2002) Orobanche L. In: López Sáez JA, Catalán P, Sáez LI (eds) Plantas parásitas de la Península Ibérica e Islas Baleares. Mundi Prensa, Madrid, pp 345–451Google Scholar
  87. Randle CP, Wolfe AD (2005) The evolution and expression of RBCL in holoparasitic sister-genera Harveya and Hyobanche (Orobanchaceae). Am J Bot 92:1575–1585PubMedGoogle Scholar
  88. Ree RH (2005) Phylogeny and the evolution of floral diversity in Pedicularis (Orobanchaceae). Int J Plant Sci 166:595–613Google Scholar
  89. Román B, Rubiales D, Torres AM, Cubero JI, Satovic Z (2001) Genetic diversity in Orobanche crenata populations from southern Spain. Theor Appl Genet 103:1108–1114Google Scholar
  90. Román B, Satovic Z, Rubiales D, Torres AM, Cubero JI, Katzir N, Joel DM (2002) Variation among and within populations of the parasitic weed Orobanche crenata from Spain and Israel revealed by Inter Simple Sequence Repeat markers. Phytopatholgy 92:1262–1266Google Scholar
  91. Román B, Alfaro C, Torres AM, Moreno MT, Satovic Z, Pujadas A, Rubiales D (2003) Genetic relationships among Orobanche species as revealed by RAPD analysis. Ann Bot 91:637–642PubMedGoogle Scholar
  92. Román B, González Verdejo CI, Satovic Z, Madrid MD, Cubero JI, Nadal S (2007a) Detecting Orobanche species by using cpDNA diagnostic markers. Phytoparasitica 35:129–135Google Scholar
  93. Román B, Hernández R, Pujadas-Salvá AJ, Cubero JI, Rubiales D, Satovic Z (2007b) Genetic diversity in two variants of Orobanche gracilis Sm. [var. gracilis and var. deludens (Beck) A. Pujadas] (Orobanchaceae) from different regions of Spain. Electron J Biotechnol 10:6. doi: 10.2225/vol10-issue2-fulltext-6 Google Scholar
  94. Román B, Satovic Z, Alfaro C, Moreno MT, Kharrat M, Pérez-de-Luque A, Rubiales D (2007c) Host differentiation in Orobanche foetida Poir. Flora 202:201–208Google Scholar
  95. Satovic Z, Joel DM, Rubiales D, Cubero JI, Román B (2009) Population genetics in weedy species of Orobanche. Australas Plant Pathol 38:228–234Google Scholar
  96. Schäferhoff B, Fleischmann A, Fischer E, Albach DC, Borsch T, Heubl G, Müller KF (2010) Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences. BMC Evol Biol 10:352. doi: 10.1186/1471-2148-10-352 PubMedGoogle Scholar
  97. Scheunert A, Fleischmann A, Olano-Marín C, Bräuchler C, Heubl G (2012) Phylogeny of tribe Rhinantheae (Orobanchaceae) with a focus on biogeography, cytology and re-examination of generic concepts. Taxon 61:1269–1285Google Scholar
  98. Schneeweiss GM (2007) Correlated evolution of life history and host range in the non-photosynthetic parasitic flowering plants Orobanche and Phelipanche (Orobanchaceae). J Evol Biol 20:471–478PubMedGoogle Scholar
  99. Schneeweiss GM, Weiss H (2003) Polyploidy in Aeginetia indica L. (Orobanchaceae). Cytologia 68:15–17Google Scholar
  100. Schneeweiss GM, Colwell AE, Park JM, Jang CG, Stuessy TF (2004a) Phylogeny of holoparasitic Orobanche (Orobanchaceae) inferred from nuclear ITS sequences. Mol Phylogenet Evol 30:465–478PubMedGoogle Scholar
  101. Schneeweiss GM, Palomeque T, Colwell AE, Weiss-Schneeweiss H (2004b) Chromosome numbers and karyotype evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. Am J Bot 91:439–448PubMedGoogle Scholar
  102. Takhtajan A (1997) Diversity and classification of flowering plants. Columbia University Press, New YorkGoogle Scholar
  103. Tank DC, Olmstead RG (2008) From annuals to perennials: phylogeny of subtribe Castillejinae (Orobanchaceae). Am J Bot 95:608–625PubMedGoogle Scholar
  104. Tank DC, Beardsley PM, Kelchner SA, Olmstead RG (2006) Review of the systematics of Scrophulariaceae s.l. and their current disposition. Austr Syst Bot 19:289–307Google Scholar
  105. Tank DC, Egger JM, Olmstead RG (2009) Phylogenetic classification of subtribe Castillejinae (Orobanchaceae). Syst Bot 34:182–197Google Scholar
  106. Teryokhin ES (2001) O rode Necranthus Gilli (Scrophulariaceae). Nov sist vysshich rastenij 33:205–207Google Scholar
  107. Teryokhin ES, Chubarov SI, Raju CA (1996) Two modes of the vegetative propagation in Orobanche cernua (Orobanchaceae). In: Moreno MT, Cubero JI, Berner D, Joel D, Musselman LJ, Parker C (eds) Advances in parasitic plant research. Consejería de Agricultura y Pesca, Junta de Andalucía, Sevilla, pp 243–248Google Scholar
  108. Teryokhin ES, Shibakina GV, Serafimovich NV, Kravtsova TI (2003) Opredeliteľ zarazichov’ich flor’i SSR (s atlasom plodov i semjan). Nauka, St PetersburgGoogle Scholar
  109. Těšitel J, Řiha P, Svobodová Š, Malinová T, Štech M (2010) Phylogeny, life history evolution and biogeography of the rhinanthoid Orobanchaceae. Folia Geobot 45:347–367Google Scholar
  110. Thorogood CJ, Rumsey FJ, Harris SA, Hiscock SJ (2008) Host-driven divergence in the parasitic plant Orobanche minor Sm. (Orobanchaceae). Mol Ecol 17:4289–4303PubMedGoogle Scholar
  111. Thorogood CJ, Rumsey FJ, Harris SA, Hiscock SJ (2009a) Gene flow between alien and native races of the holoparasitic angiosperm Orobanche minor (Orobanchaceae). Plant Syst Evol 282:31–42Google Scholar
  112. Thorogood CJ, Rumsey FJ, Hiscock SJ (2009b) Host-specific races in the holoparasitic angiosperm Orobanche minor: implications for speciation in parasitic plants. Ann Bot 103:1005–1014PubMedGoogle Scholar
  113. Uhlich H, Pusch J, Barthel KJ (1995) Die Sommerwurzarten Europas. Westarp Wissenschaften, MagdeburgGoogle Scholar
  114. Vaz Patto MC, Fernández-Aparicio M, Satovic Z, Rubiales D (2009) Extent and pattern of genetic differentiation within and between European populations of Phelipanche ramosa revealed by amplified fragment length polymorphism analysis. Weed Res 49(Supp 1):48–55Google Scholar
  115. Ward SA (1992) Assessing functional explanations of host-specificity. Am Nat 139:883–891Google Scholar
  116. Webb DA (1972) CLIV. Scrophulariaceae. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 3. Cambridge University Press, Cambridge, pp 202–281Google Scholar
  117. Weiss-Schneeweiss H, Greilhuber J, Schneeweiss GM (2006) Genome size evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. Am J Bot 93:148–156Google Scholar
  118. Westwood JH, Roney JK, Khatibi PA, Stromberg VK (2009) RNA translocation between parasitic plants and their hosts. Pest Manag Sci 65:533–539PubMedGoogle Scholar
  119. Westwood JH, Yoder JI, Timko MP, dePamphilis CW (2010) The evolution of parasitism in plants. Trends Plant Sci 15:227–235PubMedGoogle Scholar
  120. Wettstein R (1891) Scrophulariaceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten, insbesondere den Nutzpflanzen 4/3b. Wilhelm Engelmann, Leipzig, pp 39–107Google Scholar
  121. Wolfe AD, dePamphilis CW (1998) The effect of relaxed functional constraints on the photosynthetic gene rbcL in photosynthetic and nonphotosynthetic parasitic plants. Mol Biol Evol 15:1243–1258PubMedGoogle Scholar
  122. Wolfe KH, Morden CW, Palmer JD (1992) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89:10648–10652PubMedGoogle Scholar
  123. Wolfe AD, Randle CP, Liu L, Steiner KE (2005) Phylogeny and biogeography of Orobanchaceae. Folia Geobot 40:115–134Google Scholar
  124. Xi Z, Bradley RK, Wurdack KJ, Wong KM, Sugumaran M, Bomblies K, Rest JS, Davis CC (2012) Horizontal transfer of expressed genes in a parasitic flowering plant. BMC Genomics 13:227. doi: 10.1186/1471-2164-13-227
  125. Xia Z, Wang YZ, Smith JF (2009) Familial placement and relations of Rehmannia and Triaenophora (Scrophulariaceae s.l.) inferred from five gene regions. Am J Bot 96:519–530PubMedGoogle Scholar
  126. Yatskievych G, Contreras Jiménez JL (2009) A new genus of holoparasitic Orobanchaceae from Mexico. Novon 19:266–276Google Scholar
  127. Yoneyama K, Awad AA, Xie X, Yoneyama K, Takeuchi Y (2010) Strigolactones as germination stimulants for root parasitic plants. Plant Cell Pysiol 51:1095–1103Google Scholar
  128. Yoshida S, Maruyama S, Nozaki H, Shirasu K (2010) Horizontal gene transfer by the parasitic plant Striga hermonthica. Science 328:1128PubMedGoogle Scholar
  129. Young ND, dePamphilis CW (2005) Rate variation in parasitic plants: correlated and uncorrelated patterns among plastid genes of different functions. BMC Evol Biol 5:16. doi: 10.1186/1471-2148-5-16 PubMedGoogle Scholar
  130. Young ND, Steiner KE, dePamphilis CW (1999) The evolution of parasitism in Scrophulariaceae/Orobanchaceae: plastid gene sequences refute an evolutionary transition series. Ann Mo Bot Gard 86:876–893Google Scholar
  131. Zeid M, Madkour M, Koraiem Y, Nawar A, Soliman M, Zaitoun F (1997) Molecular studies on Orobanche. J Phytopathol 145:351–355Google Scholar
  132. Zhang ZY, Cvelev [Tzvelev] NN (1998) Orobanchaceae. In: Wu ZY, Raven PH (eds) Flora of China, vol 18. Missouri Botanical Garden Press, St. Louis & Science Press, Beijing, pp 229–243Google Scholar
  133. Zhang ZH, Li CQ, Li J (2009) Phylogenetic placement of Cynomorium in Rosales inferred from sequences of the inverted repeat region of the chloroplast genome. J Syst Evol 47:297–304Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Systematic and Evolutionary BotanyUniversity of ViennaViennaAustria

Personalised recommendations