Advertisement

Discovering Petri Nets from Event Logs

  • Wil M. P. van der Aalst
  • Boudewijn F. van Dongen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7480)

Abstract

As information systems are becoming more and more intertwined with the operational processes they support, multitudes of events are recorded by today’s information systems. The goal of process mining is to use such event data to extract process related information, e.g., to automatically discover a process model by observing events recorded by some system or to check the conformance of a given model by comparing it with reality. In this article, we focus on process discovery, i.e., extracting a process model from an event log. We focus on Petri nets as a representation language, because of the concurrent and unstructured nature of real-life processes. The goal is to introduce several approaches to discover Petri nets from event data (notably the α-algorithm, state-based regions, and language-based regions). Moreover, important requirements for process discovery are discussed. For example, process mining is only meaningful if one can deal with incompleteness (only a fraction of all possible behavior is observed) and noise (one would like to abstract from infrequent random behavior). These requirements reveal significant challenges for future research in this domain.

Keywords

Process mining Process discovery Petri nets Theory of regions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Berlin (2011)zbMATHGoogle Scholar
  3. 3.
    van der Aalst, W.M.P.: Distributed Process Discovery and Conformance Checking. In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software Engineering. LNCS, vol. 7212, pp. 1–25. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying History on Process Models for Conformance Checking and Performance Analysis. WIREs Data Mining and Knowledge Discovery 2(2), 182–192 (2012)CrossRefGoogle Scholar
  5. 5.
    van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S., de Medeiros, A.K.A., Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W., Weijters, A.J.M.M.: ProM 4.0: Comprehensive Support for Real Process Analysis. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 47(2), 237–267 (2003)CrossRefGoogle Scholar
  7. 7.
    van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., Alves de Medeiros, A.K., Song, M., Verbeek, H.M.W.: Business Process Mining: An Industrial Application. Information Systems 32(5), 713–732 (2007)CrossRefGoogle Scholar
  8. 8.
    van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther, C.W.: Process Mining: A Two-Step Approach to Balance Between Underfitting and Overfitting. Software and Systems Modeling 9(1), 87–111 (2010)CrossRefGoogle Scholar
  9. 9.
    van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  10. 10.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)Google Scholar
  11. 11.
    van der Aalst, W.M.P., van Dongen, B., Günther, C.W., Rozinat, A., Verbeek, E., Weijters, T.: ProM: The Process Mining Toolkit. In: de Medeiros, A.K.A., Weber, B. (eds.) Business Process Management Demonstration Track (BPMDemos 2009). CEUR Workshop Proceedings, vol. 489, pp. 1–4. CEUR-WS.org (2009)Google Scholar
  12. 12.
    Angluin, D., Smith, C.H.: Inductive Inference: Theory and Methods. Computing Surveys 15(3), 237–269 (1983)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Badouel, E., Bernardinello, L., Darondeau, P.: The Synthesis Problem for Elementary Net Systems is NP-complete. Theoretical Computer Science 186(1-2), 107–134 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial Algorithms for the Synthesis of Bounded Nets. In: Mosses, P.D., Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  15. 15.
    Badouel, E., Darondeau, P.: Theory of Regions. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining Based on Regions of Languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 375–383. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of Petri Nets from Infinite Partial Languages. In: International Conference on Application of Concurrency to System Design (ACSD 2008), pp. 170–179. IEEE Computer Society (2008)Google Scholar
  18. 18.
    Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of Petri Nets from Scenarios with VipTool. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 388–398. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Synthesis of Petri Nets from Term Based Representations of Infinite Partial Languages. Fundamenta Informaticae 95(1), 187–217 (2009)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Bratosin, C., Sidorova, N., van der Aalst, W.M.P.: Distributed Genetic Process Mining. In: Ishibuchi, H. (ed.) IEEE World Congress on Computational Intelligence (WCCI 2010), Barcelona, Spain, pp. 1951–1958. IEEE (July 2010)Google Scholar
  21. 21.
    Carmona, J., Cortadella, J., Kishinevsky, M.: A Region-Based Algorithm for Discovering Petri Nets from Event Logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Carmona, J., Cortadella, J., Kishinevsky, M.: Genet: A Tool for the Synthesis and Mining of Petri Nets. In: Application of Concurrency to System Design (ACSD 2009), pp. 181–185. IEEE Computer Society (2009)Google Scholar
  23. 23.
    Carmona, J., Cortadella, J., Kishinevsky, M.: New Region-Based Algorithms for Deriving Bounded Petri Nets. IEEE Transactions on Computers 59(3), 371–384 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Carmona, J., Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: A symbolic algorithm for the synthesis of bounded petri nets. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 92–111. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based Data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249 (1998)CrossRefGoogle Scholar
  26. 26.
    Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Synthesizing Petri Nets from State-Based Models. In: Proceedings of the 1995 IEEE/ACM International Conference on Computer-Aided Design (ICCAD 1995), pp. 164–171. IEEE Computer Society (1995)Google Scholar
  27. 27.
    Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri Nets from Finite Transition Systems. IEEE Transactions on Computers 47(8), 859–882 (1998)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Darondeau, P.: Deriving Unbounded Petri Nets from Formal Languages. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 533–548. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  29. 29.
    Datta, A.: Automating the Discovery of As-Is Business Process Models: Probabilistic and Algorithmic Approaches. Information Systems Research 9(3), 275–301 (1998)CrossRefGoogle Scholar
  30. 30.
    Desel, J., Reisig, W.: The Synthesis Problem of Petri Nets. Acta Informatica 33(4), 297–315 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    van Dongen, B.F.: Process Mining and Verification. Phd thesis, Eindhoven University of Technology (2007)Google Scholar
  32. 32.
    van Dongen, B.F., van der Aalst, W.M.P.: Multi-phase Process Mining: Building Instance Graphs. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 362–376. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  33. 33.
    van Dongen, B.F., van der Aalst, W.M.P.: Multi-Phase Mining: Aggregating Instances Graphs into EPCs and Petri Nets. In: Marinescu, D. (ed.) Proceedings of the Second International Workshop on Applications of Petri Nets to Coordination, Workflow and Business Process Management, pp. 35–58. Florida International University, Miami (2005)Google Scholar
  34. 34.
    van Dongen, B.F., Alves de Medeiros, A.K., Wen, L.: Process Mining: Overview and Outlook of Petri Net Discovery Algorithms. In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC II. LNCS, vol. 5460, pp. 225–242. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  35. 35.
    Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures - Part 1 and Part 2. Acta Informatica 27(4), 315–368 (1989)MathSciNetCrossRefGoogle Scholar
  36. 36.
    van Glabbeek, R.J., Weijland, W.P.: Branching Time and Abstraction in Bisimulation Semantics. Journal of the ACM 43(3), 555–600 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Gold, E.M.: Language Identification in the Limit. Information and Control 10(5), 447–474 (1967)zbMATHCrossRefGoogle Scholar
  38. 38.
    Gold, E.M.: Complexity of Automaton Identification from Given Data. Information and Control 37(3), 302–320 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process Simplification Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  40. 40.
    Herbst, J.: A Machine Learning Approach to Workflow Management. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 183–194. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  41. 41.
    van der Aalst, W., Adriansyah, A., de Medeiros, A.K.A., Arcieri, F., Baier, T., Blickle, T., Bose, J.C., van den Brand, P., Brandtjen, R., Buijs, J., Burattin, A., Carmona, J., Castellanos, M., Claes, J., Cook, J., Costantini, N., Curbera, F., Damiani, E., de Leoni, M., Delias, P., van Dongen, B.F., Dumas, M., Dustdar, S., Fahland, D., Ferreira, D.R., Gaaloul, W., van Geffen, F., Goel, S., Günther, C., Guzzo, A., Harmon, P., ter Hofstede, A., Hoogland, J., Ingvaldsen, J.E., Kato, K., Kuhn, R., Kumar, A., La Rosa, M., Maggi, F., Malerba, D., Mans, R.S., Manuel, A., McCreesh, M., Mello, P., Mendling, J., Montali, M., Motahari-Nezhad, H.R., zur Muehlen, M., Munoz-Gama, J., Pontieri, L., Ribeiro, J., Rozinat, A., Seguel Pérez, H., Seguel Pérez, R., Sepúlveda, M., Sinur, J., Soffer, P., Song, M., Sperduti, A., Stilo, G., Stoel, C., Swenson, K., Talamo, M., Tan, W., Turner, C., Vanthienen, J., Varvaressos, G., Verbeek, E., Verdonk, M., Vigo, R., Wang, J., Weber, B., Weidlich, M., Weijters, T., Wen, L., Westergaard, M., Wynn, M.: Process Mining Manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  42. 42.
    Lorenz, R.: Towards Synthesis of Petri Nets from General Partial Languages. In: German Workshop on Algorithms and Tools for Petri Nets (AWPN 2008). CEUR Workshop Proceedings, vol. 380, pp. 55–62. CEUR-WS.org (2008)Google Scholar
  43. 43.
    Lorenz, R., Juhás, G.: How to Synthesize Nets from Languages: A Survey. In: Henderson, S.G., Biller, B., Hsieh, M., Shortle, J., Tew, J.D., Barton, R.R. (eds.) Proceedings of the Wintersimulation Conference (WSC 2007), pp. 637–647. IEEE Computer Society (2007)Google Scholar
  44. 44.
    Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.: Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute (2011)Google Scholar
  45. 45.
    Mauser, S., Lorenz, R.: Variants of the Language Based Synthesis Problem for Petri Nets. In: International Conference on Application of Concurrency to System Design (ACSD 2009), pp. 89–98. IEEE Computer Society (2009)Google Scholar
  46. 46.
    de Medeiros, A.K.A., van der Aalst, W.M.P., Weijters, A.J.M.M.T.: Workflow Mining: Current Status and Future Directions. In: Meersman, R., Schmidt, D.C. (eds.) CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 389–406. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  47. 47.
    de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic Process Mining: An Experimental Evaluation. Data Mining and Knowledge Discovery 14(2), 245–304 (2007)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Munoz-Gama, J., Carmona, J.: Enhancing Precision in Process Conformance: Stability, Confidence and Severity. In: Chawla, N., King, I., Sperduti, A. (eds.) IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2011), Paris, France. IEEE (April 2011)Google Scholar
  49. 49.
    Pitt, L.: Inductive Inference, DFAs, and Computational Complexity. In: Jantke, K.P. (ed.) AII 1989. LNCS, vol. 397, pp. 18–44. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  50. 50.
    Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  51. 51.
    Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on Monitoring Real Behavior. Information Systems 33(1), 64–95 (2008)CrossRefGoogle Scholar
  52. 52.
    Schrijver, A.: Theory of Linear and Integer programming. Wiley-Interscience (1986)Google Scholar
  53. 53.
    Solé, M., Carmona, J.: Process Mining from a Basis of State Regions. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226–245. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  54. 54.
    Solé, M., Carmona, J.: Rbminer: A tool for discovering petri nets from transition systems. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 396–402. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  55. 55.
    Verbeek, H.M.W., Basten, T., van der Aalst, W.M.P.: Diagnosing Workflow Processes using Woflan. The Computer Journal 44(4), 246–279 (2001)zbMATHCrossRefGoogle Scholar
  56. 56.
    Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: ProM 6: The Process Mining Toolkit. In: La Rosa, M. (ed.) Proc. of BPM Demonstration Track 2010. CEUR Workshop Proceedings, vol. 615, pp. 34–39 (2010)Google Scholar
  57. 57.
    Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  58. 58.
    Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering Workflow Models from Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering 10(2), 151–162 (2003)Google Scholar
  59. 59.
    Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining Process Models with Non-Free-Choice Constructs. Data Mining and Knowledge Discovery 15(2), 145–180 (2007)MathSciNetCrossRefGoogle Scholar
  60. 60.
    van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process Discovery using Integer Linear Programming. Fundamenta Informaticae 94, 387–412 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wil M. P. van der Aalst
    • 1
  • Boudewijn F. van Dongen
    • 1
  1. 1.Department of Mathematics and Computer ScienceTechnische Universiteit EindhovenThe Netherlands

Personalised recommendations