Effects of Nutrient Addition on the Productivity of Montane Forests and Implications for the Carbon Cycle

  • Jürgen Homeier
  • Christoph Leuschner
  • Achim Bräuning
  • Nixon L. Cumbicus
  • Dietrich Hertel
  • Guntars O. Martinson
  • Susanne Spannl
  • Edzo Veldkamp
Part of the Ecological Studies book series (ECOLSTUD, volume 221)


Both carbon storage and sequestration are major ecosystem services provided by forests. The NUMEX (Ecuadorian NUtrient Manipulation EXperiment) study aims to identify the underlying mechanisms for the variation of these services as affected by future changes in nutrient availability. The ongoing experiment is being conducted in southern Ecuador to improve our understanding of the effects of continuous moderate N and P addition to tropical montane forest ecosystems. This chapter summarizes the short-term effects of nutrient addition evident at the end of the experiment’s first year. The rapid responses of the studied Andean montane forests to N and P addition observed at this early stage of the experiment illustrate the vulnerability of the forests to higher nutrient deposition.


Soil Respiration Leaf Area Index Fine Root Biomass Montane Forest Basal Area Increment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems – hypotheses revisited. Bioscience 48(11):921–934CrossRefGoogle Scholar
  2. Adamek M, Corre MD, Hölscher D (2009) Early effect of elevated nitrogen input on above-ground net primary production of a lower montane rain forest, Panama. J Trop Ecol 25:637–647CrossRefGoogle Scholar
  3. Boy J, Rollenbeck R, Valarezo C, Wilcke W (2008) Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador. Glob Biogeochem Cycles 22, GB4011Google Scholar
  4. Bräuning A, Volland-Voigt F, Burchardt I, Ganzhi O, Nauss T, Peters T (2009) Climatic control of radial growth of Cedrela montana in a humid mountain rain forest in southern Ecuador. Erdkunde 63:337–345CrossRefGoogle Scholar
  5. Cavelier J, Tanner E, Santamaria J (2000) Effect of water, temperature and fertilizers on soil nitrogen net transformations and tree growth in an elfin cloud forest of Colombia. J Trop Ecol 16:83–99CrossRefGoogle Scholar
  6. Cleveland CC, Townsend AR (2006) Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc Natl Acad Sci USA 103:10316–10321PubMedCrossRefGoogle Scholar
  7. Cleveland CC, Reed SC, Townsend AR (2006) Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology 87:492–503PubMedCrossRefGoogle Scholar
  8. Corre MD, Veldkamp E, Arnold J, Wright SJ (2010) Impact of elevated N input on soil N cycling and losses in old-growth lowland and montane forests in Panama. Ecology 91:1715–1729PubMedCrossRefGoogle Scholar
  9. Cusack D, Torn MS, McDowell WH, Silver WL (2010) The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. Glob Chang Biol 16:2555–2572Google Scholar
  10. Cusack DF, Silver WL, Torn MS, McDowell WH (2011) Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests. Biogeochemistry 104:203–225CrossRefGoogle Scholar
  11. Deslauriers A, Rossi S, Anfodillo T (2007) Dendrometer and intra annual tree growth: what kind of information can be inferred? Dendrochronologia 25:113–124CrossRefGoogle Scholar
  12. Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142PubMedCrossRefGoogle Scholar
  13. Emck P (2007) A climatology of South Ecuador. With special focus on the major Andean ridge as Atlantic-Pacific climate divide. Dissertation, Universität Erlangen-Nürnberg, 275 ppGoogle Scholar
  14. Gamboa AM, Hidalgo C, de Leon F, Etchevers JD, Gallardo JF, Campo J (2010) Nutrient addition differentially affects soil carbon sequestration in secondary tropical dry forests: early- versus late-succession stages. Restor Ecol 18(2):252–260CrossRefGoogle Scholar
  15. Giardina CP, Binkley D, Ryan MG, Fownes JH, Senock RS (2004) Belowground carbon cycling in a humid tropical forest decreases with fertilization. Oecologia 139:545–550PubMedCrossRefGoogle Scholar
  16. Gower ST, Vitousek PM (1989) Effects of nutrient amendments on fine root biomass in a primary successional forest in Hawaii. Oecologia 81:566–568CrossRefGoogle Scholar
  17. Gruber N, Galloway N (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296PubMedCrossRefGoogle Scholar
  18. Högberg P, Fan H, Quist M, Binkley D, Tamm CO (2006) Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Glob Chang Biol 12:489–499CrossRefGoogle Scholar
  19. Homeier J, Werner FA, Gradstein SR, Breckle S-W, Richter M (2008) Potential vegetation and floristic composition of Andean forests in South Ecuador, with a focus on the RBSF. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 87–100Google Scholar
  20. Homeier J, Hertel D, Camenzind T, Cumbicus NL, Maraun M, Martinsin GO, Poma LN, Rillig MC, Sandmann D, Scheu S, Veldkamp E, Wilcke W, Wullaert H, Leuschner C (2012) Tropical Andean forests are highly susceptible to nutrient inputs - rapid effects of experimental N and P addition to an Ecuadorian montane forest. PLoS One 7:e47128PubMedCrossRefGoogle Scholar
  21. Hyvönen R, Agren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, van Oijen M, Wallin G (2007) The likely impact of elevated CO2, nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480PubMedCrossRefGoogle Scholar
  22. Koehler B, Corre MD, Veldkamp E, Sueta JP (2009) Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical montane forest but no response from a tropical lowland forest on a decadal time scale. Biogeosciences 6:2973–2983CrossRefGoogle Scholar
  23. LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379PubMedCrossRefGoogle Scholar
  24. Lewis SL, Malhi Y, Phillips OL (2004) Fingerprinting the impacts of global change on tropical forests. Phil Trans R Soc Lond B 359:437–462CrossRefGoogle Scholar
  25. Li Y, Xu M, Zou X (2006) Effects of nutrient additions on ecosystem carbon cycle in a Puerto Rican tropical wet forest. Glob Chang Biol 12:284–293CrossRefGoogle Scholar
  26. Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Melillo JM, Steudler P (2004) Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. For Ecol Manage 196:7–28CrossRefGoogle Scholar
  27. McGroddy M, Silver WL (2000) Variations in belowground carbon storage and soil CO2 flux rates along a wet tropical climate gradient. Biotropica 32:614–624CrossRefGoogle Scholar
  28. Mirmanto E, Proctor J, Green J, Nagy L, Suriantata (1999) Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. Phil Trans R Soc Lond 354:1825–1829Google Scholar
  29. Moser G, Hertel D, Leuschner C (2007) Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10:924–935CrossRefGoogle Scholar
  30. Moser G, Leuschner C, Hertel D, Graefe S, Soethe N, Iost S (2011) Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Glob Chang Biol 17:2211–2226CrossRefGoogle Scholar
  31. Pardo LH, McNulty SG, Boggs JL, Duke S (2007) Regional patterns in foliar 15N across a gradient of nitrogen deposition in the northeastern US. Environ Pollut 149:293–302PubMedCrossRefGoogle Scholar
  32. Röderstein M, Hertel D, Leuschner C (2005) Above- and below-ground litter production in three tropical montane forests in southern Ecuador. J Trop Ecol 21:483–492CrossRefGoogle Scholar
  33. Tanner EVJ, Kapos V, Freskos S, Healey JR, Theobald AM (1990) Nitrogen and phosphorus fertilization of Jamaican montane forest trees. J Trop Ecol 6:231–238CrossRefGoogle Scholar
  34. Tanner EVJ, Kapos V, Franco W (1992) Nitrogen and phosphorus fertilization effects on Venezuelan montane forest trunk growth and litterfall. Ecology 73:78–86CrossRefGoogle Scholar
  35. Tanner EVJ, Vitousek PM, Cuevas E (1998) Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:10–22CrossRefGoogle Scholar
  36. Unger M, Homeier J, Leuschner C (2013) Relationships among leaf area index, below-canopy light availability and tree diversity along a transect from tropical lowland to montane forests in NE Ecuador. Trop Ecol 54(1):33–45Google Scholar
  37. Vitousek PM, Farrington H (1997) Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37:63–75CrossRefGoogle Scholar
  38. Volland-Voigt F, Bräuning A, Ganzhi O, Peters T, Maza H (2011) Radial stem variations of Tabebuia chrysantha (Bignoniaceae) in different tropical forest ecosystems of southern Ecuador. Trees 25:39–48CrossRefGoogle Scholar
  39. Wolf K, Veldkamp E, Homeier J, Martinson GO (2011) Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Glob Biogeochem Cycles 25, GB4009Google Scholar
  40. Wright SJ (2005) Tropical forests in a changing environment. Trends Ecol Evol 20:553–560PubMedCrossRefGoogle Scholar
  41. Xia J, Wan S (2008) Global response patterns of terrestrial plant species to nitrogen addition. New Phytol 179:428–439PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jürgen Homeier
    • 1
  • Christoph Leuschner
    • 1
  • Achim Bräuning
    • 2
  • Nixon L. Cumbicus
    • 3
  • Dietrich Hertel
    • 1
  • Guntars O. Martinson
    • 4
  • Susanne Spannl
    • 2
  • Edzo Veldkamp
    • 5
  1. 1.Albrecht von Haller Institute of Plant SciencesUniversity of GöttingenGöttingenGermany
  2. 2.Institute of GeographyUniversity of ErlangenErlangenGermany
  3. 3.Institute of EcologyUniversidad Tecnica Particular de LojaSan Cayetano Alto, LojaEcuador
  4. 4.Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
  5. 5.Soil Science of Tropical and Subtropical Ecosystems, Büsgen InstituteUniversity of GöttingenGöttingenGermany

Personalised recommendations