Mycorrhiza Networks Promote Biodiversity and Stabilize the Tropical Mountain Rain Forest Ecosystem: Perspectives for Understanding Complex Communities

  • Ingrid KottkeEmail author
  • Sabrina Setaro
  • Ingeborg Haug
  • Paulo Herrera
  • Dario Cruz
  • Andreas Fries
  • Julia Gawlik
  • Jürgen Homeier
  • Florian A. Werner
  • Andrés Gerique
  • Juan Pablo Suárez
Part of the Ecological Studies book series (ECOLSTUD, volume 221)


To better understand the mechanisms behind maintenance of the extraordinary plant and fungal diversity in tropical mountain forests we applied, for the first time, network theory to investigate the mycobiont–plant communities. We addressed three different mycorrhizal classes, arbuscular mycorrhizae of tropical trees, mycorrhizae of terrestrial and epiphytic Orchidaceae and cavendishioid mycorrhizae among Ericaceae and Sebacinales. We found significant nestedness (NODF) for arbuscular and orchid mycorrhizal networks. In accordance to previous simulations and verifications of species-rich, mutualistic plant–animal networks, we conclude that preferential attachment of new members to already existing links integrates and maintains rare species and stabilizes our species rich assemblages.


Rare Species Degree Distribution Preferential Attachment Provision Ecosystem Service Pristine Forest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful for fruitful discussions with Pedro Jordano on network analysis.


  1. Abramson G, Trejo Soto CA, Leonardo O (2011) The role of asymmetric interactions on the effect of habitat destruction in mutualistic networks. PLoS One 6:e21028PubMedCrossRefGoogle Scholar
  2. Almeida-Neto M, Guimaraes P, Guimaraes PR Jr, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurements. Oikos 117:1227–1239CrossRefGoogle Scholar
  3. Atmar W, Patterson BD (1993) The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96:373–382CrossRefGoogle Scholar
  4. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512PubMedCrossRefGoogle Scholar
  5. Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Syst 38:567–593CrossRefGoogle Scholar
  6. Bascompte J, Jordano P, Melián CL, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci 5:9383–9387CrossRefGoogle Scholar
  7. Bastolla U, Fortuna MA, Pascual-Garcia A, Ferrera A, Luque B, Bascompte J (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:1018–1020PubMedCrossRefGoogle Scholar
  8. Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:9PubMedCrossRefGoogle Scholar
  9. Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13:492–498PubMedCrossRefGoogle Scholar
  10. Burgos E, Ceva H, Perazzo RP, Devoto M, Medan D, Zimmermann M, Delbue M (2007) Why nestedness in mutualistic networks? J Theor Biol 249:307–313PubMedCrossRefGoogle Scholar
  11. Chagnon PL, Bradley RL, Klironomos JN (2012) Using ecological network theory to evaluate the causes and consequences of arbuscular mycorrhizal community structure. New Phytol 194:307–312PubMedCrossRefGoogle Scholar
  12. Cruz D, Suárez JP, Kottke I, Piepenbring M, Oberwinkler F (2011) Defining species in Tulasnella by correlating morphology and nrDNA ITS-5.8S sequence data of basidiomata from a tropical Andean forest. Mycol Prog 10:229–238CrossRefGoogle Scholar
  13. Donatti CI, Guimaraes PR, Galetti M, Pizo MA, Marquitti FM, Dirzo R (2011) Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol Lett 14:773–781PubMedCrossRefGoogle Scholar
  14. Fortuna MA, Bascompte J (2006) Habitat loss and the structure of plant-animal mutualistic networks. Ecol Lett 9:281–286PubMedCrossRefGoogle Scholar
  15. Fortuna MA, Stouffer DB, Olesen JM, Jordano P, Mouillot D, Krasnov BR, Poulin R, Bascompte J (2010) Nestedness versus modularity in ecological networks: two sides of the same coin? J Anim Ecol 79:811–817PubMedGoogle Scholar
  16. Frank B (1885) Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Ber Deutsch Bot Ges 3:128–145; English translation in Mycorrhiza (2005) 15:267–275Google Scholar
  17. Fries A, Rollenbeck R, Göttlicher D, Nauß T, Homeier J, Peters T, Bendix J (2009) Thermal structure of a megadiverse mountain ecosystem in Southern Ecuador and its regionalization. Erdkunde 63:321–335CrossRefGoogle Scholar
  18. Fries A, Rollenbeck R, Nauß T, Peters T, Bendix J (2012) Near surface air humidity in a megadiverse mountain ecosystem in Southern Ecuador and its regionalization. Agric For Meteorol 152:17–30CrossRefGoogle Scholar
  19. Göker M, García-Blázquez G, Voglmayr H, Tellería MT, Martín MP (2009) Molecular taxonomy of phytopathogenic fungi: a case study in Peronospora. PLoS One 29:e6319CrossRefGoogle Scholar
  20. Gómez JM, Perfectti F, Jordano P (2011) The functional consequences of mutualistic network architecture. PLoS One 6:e16143PubMedCrossRefGoogle Scholar
  21. Grime JP, Mackey JM, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422CrossRefGoogle Scholar
  22. Guimaraes PR Jr, Guimaraes P (2006) Improving the analysis of nestedness for large sets of matrices. Environ Model Softw 21:1512–1513CrossRefGoogle Scholar
  23. Günter S, Gonzalez P, Alvarez G, Aguirre N, Palomeque X, Haubrich F, Weber M (2009) Determinants for successful reforestation of abandoned pastures in the Andes: soil conditions and vegetation cover. For Ecol Manage 258:81–91CrossRefGoogle Scholar
  24. Haug I, Wubet T, Weiß M, Aguirre N, Weber M, Günter S, Kottke I (2010) Species-rich but distinct arbuscular mycorrhizal communities in reforestation plots on degraded pastures and in neighboring pristine tropical mountain rain forest. J Trop Ecol 51:125–148Google Scholar
  25. Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kitk P, Nilsson RH (2011) Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biol Rev 25:38–47CrossRefGoogle Scholar
  26. Homeier J, Werner FA (2007) Spermatophyta checklist – Reserva Biológica San Francisco (Prov. Zamora-Chinchipe, S. Ecuador). In: Liede-Schumann S, Breckle S-W (eds) Provisional checklist of flora and fauna of San Francisco Valley and its surroundings. Ecotropical monographs, vol 4. Society for Tropical Ecology, pp 15–58Google Scholar
  27. Homeier J, Breckle S-W, Günter S, Rollenbeck RT, Leuschner C (2010) Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 42:140–148CrossRefGoogle Scholar
  28. Ings TC, Montoya JM, Bascompte J, Blüthgen N, Brown L, Dormann CF, Edwards F, Figueroa D, Jacob U, Jones JI, Lauridsen RB, Ledger ME, Lewis HM, Olesen JM, van Veen FJ, Woodward G (2009) Ecological networks – beyond food webs. J Anim Ecol 78:253–269PubMedCrossRefGoogle Scholar
  29. Jacquemyn H, Merckx V, Brys R, Tyteca D, Cammue BP, Honnay O, Lievens B (2011) Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in the genus Orchis (Orchidaceae). New Phytol 192:518–528PubMedCrossRefGoogle Scholar
  30. Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in coevolution networks of plant-animal interactions. Ecol Lett 6:69–81CrossRefGoogle Scholar
  31. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333(6044):880–882PubMedCrossRefGoogle Scholar
  32. Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732CrossRefGoogle Scholar
  33. Kottke I, Hönig K (1998) Improvement of maintenance and autochthones mycorrhization of beech (Fagus sylvatica L.) and oak (Quercus robur L.) plantlets by pre-mycorrhization with Paxillus involutus (Batsch) Fr. In: Misra A (ed) Problems of wasteland development and role of microbes. AMIFM Publications, Bhubaneswar, pp 187–218Google Scholar
  34. Kottke I, Beck A, Haug I, Setaro S, Jeske V, Suárez JP, Pazmiño L, Preußing M, Nebel M, Oberwinkler F (2008) Mycorrhizal state and new and special features of mycorrhizae of trees, ericads, orchids, ferns and liverworts. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer Verlag, Berlin, pp 137–148Google Scholar
  35. Kottke I, Suárez JP, Herrera P, Cruz D, Bauer R, Haug I, Garnica S (2010) Atractiellomycetes belonging to the ‘rust’ lineage (Pucciniomycotina) form mycorrhizae with terrestrial and epiphytic neotropical orchids. Proc R Soc London B 277:1289–1296CrossRefGoogle Scholar
  36. Martos F, Munoz F, Pailler T, Kottke I, Gonneau C, Selosse MA (2012) The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids. Mol Ecol 21:5098–5109PubMedCrossRefGoogle Scholar
  37. Medan D, Perazzo RP, Devoto M, Burgos E, Zimmermann MG, Ceva H, Delbue AM (2007) Analysis and assembling of network structure in mutualistic systems. J Theor Biol 246:510–521PubMedCrossRefGoogle Scholar
  38. Mello MA, Marquitti FM, Guimaraes PR Jr, Kalko EK, Jordano P, de Aguiar MA (2011) The missing part of seed dispersal networks: structure and robustness of bat-fruit interactions. PLoS One 6:e17395PubMedCrossRefGoogle Scholar
  39. Memmot J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc R Soc London B 271:2605–2611CrossRefGoogle Scholar
  40. Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A, Verdú M (2012) The network structure of plant-arbuscular mycorrhizal fungi. New Phytol 194:536–547PubMedCrossRefGoogle Scholar
  41. Okuyama T, Holland JN (2008) Network structural properties mediate the stability of mutualistic communities. Ecol Lett 11:208–216PubMedCrossRefGoogle Scholar
  42. Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci 104:19891–19896PubMedCrossRefGoogle Scholar
  43. Ordoñez O, Lalama K (2006) Experiencias del manejo apícola en Uritusinga, Loja, Ecuador. Fundación Ecológica Arco Iris, PROBONA, LojaGoogle Scholar
  44. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775PubMedCrossRefGoogle Scholar
  45. Peters T, Diertl KH, Gawlik J, Rankl M, Richter M (2010) Vascular plant diversity in natural and anthropogenic ecosystems in the Andes of Southern Ecuador. Mt Res Dev 30:344–352CrossRefGoogle Scholar
  46. Saavedra S, Reed-Tsochas F, Uzzi B (2009) A simple model of bipartite cooperation for ecological and organizational networks. Nature 457:463–466PubMedCrossRefGoogle Scholar
  47. Scheublin TR, van Logtestijn RS, van der Heijden MG (2007) Presence and identity of arbuscular mycorrhizal fungi influence interactions between plant species. J Ecol 95:631–638CrossRefGoogle Scholar
  48. Schleuning M, Blüthgen N, Flörchinger M, Braun J, Schaefer HM, Böhning-Gaese K (2011) Specialization and interaction strength in a tropical plant–frugivore network differ among forest strata. Ecology 92:26–36PubMedCrossRefGoogle Scholar
  49. Setaro S, Kron K (2012) Neotropical and North American Vaccinioideae (Ericaceae) share their mycorrhizal Sebacinales – an indication for concerted migration? PLoS Currents: Tree of Life. doi: 10.1371/currents.RRN1227
  50. Setaro S, Oberwinkler F, Kottke I (2006a) Anatomy and ultrastructure of mycorrhizal associations of Neotropical Ericaceae. Mycol Prog 5:243–254CrossRefGoogle Scholar
  51. Setaro S, Weiß M, Oberwinkler F, Kottke I (2006b) Sebacinales form ectendomycorrhizas with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador. New Phytol 169:355–365PubMedCrossRefGoogle Scholar
  52. Setaro S, Suarez JP, Herrera P, Cruz D, Kottke I (2013) Distinct but closely related Sebacinales from mycorrhizae with co-existing Ericaceae and Orchidaceae in a neotropical mountain area. In: Varma A, Kost G, Oelmüller R (eds) Sebacinales. Forms, functions and biotechnological application. Springer, Berlin, pp 81–105Google Scholar
  53. Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic, San DiegoGoogle Scholar
  54. Suárez JP, Weiß M, Abele A, Garnica S, Oberwinkler F, Kottke I (2006) Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycol Res 110:1257–1270PubMedCrossRefGoogle Scholar
  55. Suárez JP, Weiß M, Abele A, Oberwinkler F, Kottke I (2008) Members of Sebacinales subgroup B form mycorrhizae with epiphytic orchids in a neotropical mountain rain forest. Mycol Prog 7:75–85CrossRefGoogle Scholar
  56. Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–856PubMedCrossRefGoogle Scholar
  57. Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, ChicagoGoogle Scholar
  58. Werner FA (2011) Reduced growth and survival of vascular epiphytes on isolated remnant trees in a recent tropical montane forest clear-cut. Basic Appl Ecol 12:172–181CrossRefGoogle Scholar
  59. Werner FA, Homeier J, Gradstein SR (2005) Diversity of vascular epiphytes on isolated remnant trees in the montane forest belt of Southern Ecuador. Ecotropica 11:21–40Google Scholar
  60. Zhang F, Hui C, Terblanche JS (2011) An interaction switch predicts the nested architecture of mutualistic networks. Ecol Lett 14:797–803PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ingrid Kottke
    • 1
    • 2
    Email author
  • Sabrina Setaro
    • 3
  • Ingeborg Haug
    • 1
  • Paulo Herrera
    • 2
  • Dario Cruz
    • 2
  • Andreas Fries
    • 4
  • Julia Gawlik
    • 5
  • Jürgen Homeier
    • 6
  • Florian A. Werner
    • 7
  • Andrés Gerique
    • 5
  • Juan Pablo Suárez
    • 2
  1. 1.Plant Evolutionary Ecology, Institute of Evolution and EcologyEberhard-Karls-University TübingenTübingenGermany
  2. 2.Centro de Biologia Celular y MolecularUniversidad Técnica Particular de LojaLojaEcuador
  3. 3.Department of BiologyWake Forest UniversityWinston-SalemUSA
  4. 4.Department of GeographyPhilipps-University MarburgMarburgGermany
  5. 5.Institute of GeographyUniversity of ErlangenErlangenGermany
  6. 6.Plant EcologyUniversity of GöttingenGöttingenGermany
  7. 7.Institute of Biology and Environmental SciencesCarl von Ossietzky University OldenburgOldenburgGermany

Personalised recommendations