Advertisement

On-the-Fly Confluence Detection for Statistical Model Checking

  • Arnd Hartmanns
  • Mark Timmer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7871)

Abstract

Statistical model checking is an analysis method that circumvents the state space explosion problem in model-based verification by combining probabilistic simulation with statistical methods that provide clear error bounds. As a simulation-based technique, it can only provide sound results if the underlying model is a stochastic process. In verification, however, models are usually variations of nondeterministic transition systems. The notion of confluence allows the reduction of such transition systems in classical model checking by removing spurious nondeterministic choices. In this paper, we show that confluence can be adapted to detect and discard such choices on-the-fly during simulation, thus extending the applicability of statistical model checking to a subclass of Markov decision processes. In contrast to previous approaches that use partial order reduction, the confluence-based technique can handle additional kinds of nondeterminism. In particular, it is not restricted to interleavings. We evaluate our approach, which is implemented as part of the modes simulator for the Modest modelling language, on a set of examples that highlight its strengths and limitations and show the improvements compared to the partial order-based method.

Keywords

Model Check Markov Decision Process Atomic Proposition Reduction Function Outgoing Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baier, C., D’Argenio, P.R., Größer, M.: Partial order reduction for probabilistic branching time. ENTCS 153(2) (2006)Google Scholar
  2. 2.
    Baier, C., Größer, M., Ciesinski, F.: Partial order reduction for probabilistic systems. In: QEST, pp. 230–239. IEEE Computer Society (2004)Google Scholar
  3. 3.
    Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)Google Scholar
  4. 4.
    Blom, S.C.C.: Partial τ-confluence for efficient state space generation. Tech. Rep. SEN-R0123, CWI (2001)Google Scholar
  5. 5.
    Blom, S.C.C., van de Pol, J.: State space reduction by proving confluence. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 596–609. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Bogdoll, J., Ferrer Fioriti, L.M., Hartmanns, A., Hermanns, H.: Partial order methods for statistical model checking and simulation. In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE 2011. LNCS, vol. 6722, pp. 59–74. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Bogdoll, J., Hartmanns, A., Hermanns, H.: Simulation and statistical model checking for Modestly nondeterministic models. In: Schmitt, J.B. (ed.) MMB & DFT 2012. LNCS, vol. 7201, pp. 249–252. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: A compositional modeling formalism for hard and softly timed systems. IEEE Transactions on Software Engineering 32(10), 812–830 (2006)CrossRefGoogle Scholar
  9. 9.
    Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untraceability. Journal of Cryptology 1(1), 65–75 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    D’Argenio, P.R., Niebert, P.: Partial order reduction on concurrent probabilistic programs. In: QEST, pp. 240–249. IEEE Computer Society (2004)Google Scholar
  11. 11.
    Evangelista, S., Pajault, C.: Solving the ignoring problem for partial order reduction. Int. Journal on Software Tools for Technology Transfer 12(2), 155–170 (2010)CrossRefGoogle Scholar
  12. 12.
    Groote, J.F., van de Pol, J.: State space reduction using partial τ-confluence. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 383–393. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Hansen, H., Timmer, M.: A comparison of confluence and ample sets in probabilistic and non-probabilistic branching time. To be published in TCS (2013)Google Scholar
  14. 14.
    Hartmanns, A.: Model-checking and simulation for stochastic timed systems. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 372–391. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Hartmanns, A., Hermanns, H.: A Modest approach to checking probabilistic timed automata. In: QEST, pp. 187–196. IEEE Computer Society (2009)Google Scholar
  16. 16.
    Hartmanns, A., Timmer, M.: On-the-fly confluence detection for statistical model checking (extended version). Tech. Rep. TR-CTIT-13-04, CTIT, University of Twente (2013)Google Scholar
  17. 17.
    Henriques, D., Martins, J., Zuliani, P., Platzer, A., Clarke, E.M.: Statistical model checking for Markov decision processes. In: QEST, pp. 84–93. IEEE Computer Society (2012)Google Scholar
  18. 18.
    Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Lassaigne, R., Peyronnet, S.: Approximate planning and verification for large Markov decision processes. In: SAC, pp. 1314–1319. ACM (2012)Google Scholar
  21. 21.
    Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Mateescu, R., Wijs, A.: Sequential and distributed on-the-fly computation of weak tau-confluence. Science of Computer Programming 77(10-11), 1075–1094 (2012)zbMATHCrossRefGoogle Scholar
  23. 23.
    Timmer, M., Stoelinga, M., van de Pol, J.: Confluence reduction for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 311–325. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Pace, G.J., Lang, F., Mateescu, R.: Calculating τ-confluence compositionally. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 446–459. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    Younes, H.L.S., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. Statistical probabilistic model checking: An empirical study. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 46–60. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Arnd Hartmanns
    • 1
  • Mark Timmer
    • 2
  1. 1.Computer ScienceSaarland UniversitySaarbrückenGermany
  2. 2.Formal Methods and ToolsUniversity of TwenteThe Netherlands

Personalised recommendations