Statistical Model Checking of Wireless Mesh Routing Protocols

  • Peter Höfner
  • Annabelle McIver
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7871)

Abstract

Several case studies indicate that model checking is limited in the analysis of mesh networks: state space explosion restricts applicability to at most 10 node networks, and quantitative reasoning, often sufficient for network evaluation, is not possible. Both deficiencies can be overcome to some extent by the use of statistical model checkers, such as SMC-Uppaal. In this paper we illustrate this by a quantitative analysis of two well-known routing protocols for wireless mesh networks, namely AODV and DYMO. Moreover, we push the limits and show that this technology is capable of analysing networks of up to 100 nodes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amin, M., Abrar, M., Khan, Z.U., Andusalam, Rizwan, S.: Comparison of OLSR & DYMO routing protocols on the basis of different performance metrics in mobile ad-hoc networks. American Journal of Scientific Research (2011)Google Scholar
  2. 2.
    Bhargavan, K., Obradovic, D., Gunter, C.: Formal verification of standards for distance vector routing protocols. J. ACM 49(4), 538–576 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bulychev, P., David, A., Larsen, K.G., Legay, A., Mikučionis, M., Bøgsted Poulsen, D.: Checking and distributing statistical model checking. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 449–463. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Bulychev, P., David, A., Larsen, K., Mikučionis, M., Bøgsted Poulsen, D., Legay, A., Wang, Z.: UPPAAL-SMC: Statistical model checking for priced timed automata. In: Wiklicky, H., Massink, M. (eds.) Quantitative Aspects of Programming Languages and Systems. EPTCS, vol. 85, pp. 1–16. Open Publishing Association (2012)Google Scholar
  5. 5.
    Chiyangwa, S., Kwiatkowska, M.: A timing analysis of AODV. In: Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 306–321. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Edenhofer, S., Höfner, P.: Towards a rigorous analysis of AODVv2 (DYMO). In: Rigorous Protocol Engineering (W-RiPE 2012). IEEE Press (2012)Google Scholar
  7. 7.
    Espensen, K.L., Kjeldsen, M.K., Kristensen, L.M.: Modelling and initial validation of the DYMO routing protocol for mobile ad-hoc networks. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 152–170. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.: Automated analysis of AODV using UPPAAL. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 173–187. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    van Glabbeek, R.J., Höfner, P., Tan, W.L., Portmann, M.: Sequence numbers do not guarantee loop freedom—AODV can yield routing loops (2012), http://rvg.web.cse.unsw.edu.au/pub/AODVloop.pdf
  10. 10.
    Johnson, D., Lysko, A.: Comparison of MANET routing protocols using a scaled indoor wireless grid. Mob. Netw. Appl. 13(1-2), 82–96 (2008)CrossRefGoogle Scholar
  11. 11.
    Kum, D.W., Park, J.S., Cho, Y.Z., Cheon, B.Y.: Performance evaluation of AODV and DYMO routing protocols in MANET. In: Consumer Communications and Networking Conference (CCNC 2010), pp. 1046–1047. IEEE Press (2010)Google Scholar
  12. 12.
    Milic, B., Malek, M.: NPART—node placement algorithm for realistic topologies in wireless multihop network simulation. In: Simulation Tools and Techniques (Simutools 2009), pp. 9:1–9:10. ICST (2009)Google Scholar
  13. 13.
    Miskovic, S., Knightly, E.: Routing primitives for wireless mesh networks: Design, analysis and experiments. In: Conference on Information communications (INFOCOM 2010), pp. 2793–2801. IEEE Press (2010)Google Scholar
  14. 14.
    Perkins, C., Belding-Royer, E., Das, S.: Ad hoc on-demand distance vector (AODV) routing. RFC 3561 (Experimental) (2003), http://www.ietf.org/rfc/rfc3561
  15. 15.
    Perkins, C., Chakeres, I.: Dynamic MANET on-demand (AODVv2) routing. IETF Internet Draft (Work in Progress) (March 2012), http://tools.ietf.org/html/draft-ietf-manet-dymo-22
  16. 16.
    R Core Team: R: A Language and Environment for Statistical Computing (2012), http://www.R-project.org
  17. 17.
    Saleem, M., Khayam, S.A., Farooq, M.: On performance modeling of ad hoc routing protocols. EURASIP J. Wirel. Commun. Netw. 2010, 31:1–31:13 (2010)Google Scholar
  18. 18.
    Schuts, M., Zhu, F., Heidarian, F., Vaandrager, F.: Modelling clock synchronization in the Chess gMAC WSN protocol. In: Andova, S., McIver, A., D’Argenio, P., Cuijpers, P., Markovski, J., Morgan, C., Núñez, M. (eds.) Quantitative Formal Methods: Theory and Applications (QFM 2009). EPTCS, vol. 13, pp. 41–54 (2009)Google Scholar
  19. 19.
    Sen, K., Viswanathan, M., Agha, G.A.: Vesta: A statistical model-checker and analyzer for probabilistic systems. In: Quantitative Evaluaiton of Systems (QEST 2005), pp. 251–252. IEEE Press (2005)Google Scholar
  20. 20.
    Younes, H.: Verification and Planning for Stochastic Processes with Asynchronous Events. Ph.D. thesis, Carnegie Mellon University (2004)Google Scholar
  21. 21.
    Zave, P.: Using lightweight modeling to understand CHORD. SIGCOMM Comput. Commun. Rev. 42(2), 49–57 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Peter Höfner
    • 1
    • 3
  • Annabelle McIver
    • 2
    • 1
  1. 1.NICTAAustralia
  2. 2.Department of ComputingMacquarie UniversityAustralia
  3. 3.Computer Science and EngineeringUniversity of New South WalesAustralia

Personalised recommendations