A Cognitive Management Framework for Empowering the Internet of Things

  • Vassilis Foteinos
  • Dimitris Kelaidonis
  • George Poulios
  • Vera Stavroulaki
  • Panagiotis Vlacheas
  • Panagiotis Demestichas
  • Raffaele Giaffreda
  • Abdur Rahim Biswas
  • Stephane Menoret
  • Gerard Nguengang
  • Matti Etelapera
  • Nechifor Septimiu-Cosmin
  • Marc Roelands
  • Filippo Visintainer
  • Klaus Moessner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7858)

Abstract

This work presents a Cognitive Management framework for empowering the Internet of Things (IoT). This framework has the ability to dynamically adapt its behaviour, through self-management functionality, taking into account information and knowledge (obtained through machine learning) on the situation (e.g., internal status and status of environment), as well as policies (designating objectives, constraints, rules, etc.). Cognitive technologies constitute a unique and efficient approach for addressing the technological heterogeneity of the IoT and obtaining situation awareness, reliability and efficiency. The paper also presents a first indicative implementation of the proposed framework, comprising real sensors and actuators. The preliminary results of this work demonstrate high potential towards self-reconfigurable IoT.

Keywords

Cognitive Management Composite Virtual Objects Internet of Things Stakeholder requirements User requirements Virtual Objects 

References

  1. 1.
    Uusitalo, M.: Global Vision for the Future Wireless World from the WWRF. IEEE Vehicular Technology Magazine 1(2), 4–8 (2006)CrossRefGoogle Scholar
  2. 2.
    Weiser, M.: The Computer for the Twenty-First Century. Scientific American, pp. 94–10 (September 1991)Google Scholar
  3. 3.
    FP7-ICT-287708 project iCore (Internet Connected Objects for Reconfigurable Eco-systems), http://www.iot-icore.eu (accessed February 2012)
  4. 4.
    Giusto, D., Iera, A., Morabito, G., Atzori, L., Blefari Melazzi, N.: CONVERGENCE: Extending the Media Concept to Include Representations of Real World Objects. In: The Internet of Things, pp. 129–140. Springer, New York (2010)CrossRefGoogle Scholar
  5. 5.
    Castellani, A.P., Bui, N., Casari, P., Rossi, M., Shelby, Z., Zorzi, M.: Architecture and protocols for the Internet of Things: A case study. In: Proc. Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 678–683 (March 2010 )Google Scholar
  6. 6.
    FP7-ICT-215923 project SENSEI (Integrating the Physical with the Digital World of the Network of the Future), http://www.sensei-project.eu (accessed February 2012)
  7. 7.
    Kostelnik, P., Sarnovsky, M., Furdik, K.: The Semantic Middleware for Networked Embedded Systems Applied in the Internet of Things and Services. In: Proc. 2nd Workshop on Software Services (WoSS), Timisoara, Romania (June 2011)Google Scholar
  8. 8.
    ARTEMIS SOFIA project, http://www.sofia-project.eu/ (accessed February 2012)
  9. 9.
    Franchi, A., Di Stefano, L., Tullio, S.C.: Mobile Visual Search using Smart-M3. In: Proc. IEEE Symposium on Computers and Communications (ISCC) (June 2010)Google Scholar
  10. 10.
    Ubiquitous ID Center, http://www.uidcenter.org/ (accessed February 2012)
  11. 11.
    Guinard, D., Trifa, V., Mattern, F., Wilde, E.: From the Internet of Things to the Web of Things: Resource Oriented Architecture and Best Practices. In: Architecting the Internet of Things. Springer (December 2010)Google Scholar
  12. 12.
    De Poorter, E., Moerman, I., Demeester, P.: Enabling direct connectivity between heterogeneous objects in the internet of things through a network service oriented architecture. EURASIP Journal on Wireless Communications and Networking, 61 (2011)Google Scholar
  13. 13.
    Kelaidonis, D., Somov, A., Foteinos, V., Poulios, G., Stavroulaki, V., Vlacheas, P., Demestichas, P., Baranov, A., Rahim Biswas, A., Giaffreda, R.: Virtualization and Cognitive Management of Real World Objects in the Internet of Things. In: Proceedings of The IEEE International Conference on Internet of Things, iThings 2012, Besancon, France (2012)Google Scholar
  14. 14.
    Schonwalder, J., Fouquet, M., Rodosek, G., Hochstatter, I.: Future Internet = content + services + management. IEEE Communications Magazine 47(7), 27–33 (2009)CrossRefGoogle Scholar
  15. 15.
    Waspmote, http://www.libelium.com/products/waspmote (accessed February 2013)
  16. 16.
    Arduino, http://www.arduino.cc/ (accessed February 2013)

Copyright information

© Authors 2013

Authors and Affiliations

  • Vassilis Foteinos
    • 1
  • Dimitris Kelaidonis
    • 1
  • George Poulios
    • 1
  • Vera Stavroulaki
    • 1
  • Panagiotis Vlacheas
    • 1
  • Panagiotis Demestichas
    • 1
  • Raffaele Giaffreda
    • 2
  • Abdur Rahim Biswas
    • 2
  • Stephane Menoret
    • 3
  • Gerard Nguengang
    • 3
  • Matti Etelapera
    • 4
  • Nechifor Septimiu-Cosmin
    • 5
  • Marc Roelands
    • 6
  • Filippo Visintainer
    • 7
  • Klaus Moessner
    • 8
  1. 1.Department of Digital SystemsUniversity of PiraeusGreece
  2. 2.CreateNetItaly
  3. 3.Thales CommunicationsFrance
  4. 4.VTT Research CentreFinland
  5. 5.SiemensRomania
  6. 6.Alcatel Lucent Bell LabsBelgium
  7. 7.Centro Ricerche FIATItaly
  8. 8.University of SurreyGuildfordUK

Personalised recommendations