IoT6 – Moving to an IPv6-Based Future IoT

  • Sébastien Ziegler
  • Cedric Crettaz
  • Latif Ladid
  • Srdjan Krco
  • Boris Pokric
  • Antonio F. Skarmeta
  • Antonio Jara
  • Wolfgang Kastner
  • Markus Jung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7858)


IoT6 is a research project on the future Internet of Things. It aims at exploiting the potential of IPv6 and related standards to overcome current shortcomings and fragmentation of the Internet of Things. The main challenges and objectives of IoT6 are to research, design and develop a highly scalable IPv6-based Service-Oriented Architecture to achieve interoperability, mobility, cloud computing integration and intelligence distribution among heterogeneous smart things components, applications and services. The present article starts by a short introduction on IPv6 capabilities for the Internet of Things and information on the current deployment of IPv6 in the world. It continues with a presentation of the IoT6 architecture model and its concept of service discovery. Finally, it illustrates the potential of such IPv6-based architecture by presenting the integration of building automation components using legacy protocols.


IoT M2M IPv6 CoAP architecture interoperability building automation 


  1. 1.
  2. 2.
    According to a study made by Lars Eggert, IRTF Chair– IPv6 Deployment TrendsGoogle Scholar
  3. 3.
    Advancing the Internet: Action Plan for the deployment of Internet Protocol version 6 (IPv6) in Europe, European Commission communication,
  4. 4.
  5. 5.
    National IPv6 Roadmap Policy version 2, and National Telecom Policy 2012,
  6. 6.
    SENSEI European research project (Integrating the Physical with the Digital World of the Network of the Future), Pervasive and Trusted Network and Service Infrastructures: ICT-2007.1.1: The Network of the Future, Contract no. 215923,
  7. 7.
    Hobnet European research project,
  8. 8.
    Internet of Things Architecture, IoT-A,
  9. 9.
    IoT6 European research project, Deliverable D1.5: “IoT6 Reference Model”, White Paper (2012),
  10. 10.
  11. 11.
  12. 12.
    Jara, A.J., Martinez-Julia, P., Skarmeta, A.F.: Light-weight multicast DNS and DNS-SD (lmDNS-SD): IPv6-based resource and service discovery for the Web of Things. In: International Workshop on Extending Seamlessly to the Internet of Things (2012)Google Scholar
  13. 13.
    Jara, A.J., Zamora, M.A., Skarmeta, A.F.: GLoWBAL IP: an adaptive and transparent IPv6 integration in the Internet of Things. In: MobiWIS 2012, The 9th International Conference on Mobile Web Information Systems, Niagara Falls, Ontario, Canada, August 27-29 (2012)Google Scholar
  14. 14.
    Constrained Application Protocol (CoAP), draft-ietf-core-coap-11 (July 16, 2012),
  15. 15.
    Constrained RESTful Environments (CoRE),
  16. 16.
    Kim, S.H., Im, J., Byun, J., Lee, K., Kim, D., Ziegler, S., Crettaz, C., KAIST, Mandat International: Initial IoT6 integrations have been validated with IoT-SaaS integration between Mandat International and RunMyProcess, and STIS integration with KAIST (October 2012)Google Scholar
  17. 17.
    Dunkels, A., Vasseur, J.: IP for Smart Objects, Internet Protocol for Smart Objects (IPSO) Alliance, White Paper, N. 1, IPSO Alliance (2008)Google Scholar
  18. 18.
    Shelby, Z., Chauvenet, C.: The IPSO Application Framework, draft-ipso-app-framework-04, IPSO Alliance, Interop Committee (2012)Google Scholar
  19. 19.
    Tian, L.: Lightweight M2M (OMA LWM2M), OMA Device Management Working Group (OMA DM WG), Open Mobile Alliance - OMA (2012)Google Scholar
  20. 20.
    Shelby, Z., Hartke, K., Bormann, C., Frank, B.: Constrained Application Protocol (CoAP), Constrained Resources (CoRE) Working Group, Internet Engineering Task Force (IETF), work in progress, draft-ietf-core-coap-13 (2012)Google Scholar
  21. 21.
    Li, S.T., Hoebeke, J., Jara, A.J.: Conditional observe in CoAP, Constrained Resources (CoRE) Working Group, Internet Engineering Task Force (IETF), work in progress, draft-li-core-conditional-observe-03 (2012)Google Scholar
  22. 22.
    Shelby, Z.: Embedded web services. IEEE Wireless Communications 17(6), 52–57 (2010), doi:10.1109/MWC.2010.5675778CrossRefGoogle Scholar
  23. 23.
    Sun, S., Lannom, L., Boesch, B.: RFC3650 - Handle System Overview. IETF Standards (2003)Google Scholar
  24. 24.
    Kastner, W., Neugschwandtner, G.: Data communications for distributed building automation. In: Embedded Systems Handbook, 2nd edn., vol. 2, pp. 29–34. CRC Press, Boca Raton (2009)Google Scholar
  25. 25.
    OPC Unified Architecture Specification, OPC Foundation (2009)Google Scholar
  26. 26.
    oBIX Version 1.1 Working Draft 06, OASIS (2010)Google Scholar
  27. 27.
    Addendum c to ANSI/ASHRAE Standard 135-2004, BACnet - A data communication protocol for building automation and control networks, American Society of Heating, Refrigerating and Air-Conditioning Engineers (2004)Google Scholar
  28. 28.
    Jung, M., Weidinger, J., Reinisch, C., Kastner, W., Crettaz, C., Olivieri, A., Bocchi, Y.: A transparent IPv6 multi-protocol gateway to integrate Building Automation Systems in the Internet of Things. In: Proceedings of the IEEE International Conference on Internet of Things (iThings 2012), Besancon, France (November 2012)Google Scholar
  29. 29.
    iCORE EU Project,
  30. 30.
    BUTLER EU Project,

Copyright information

© Authors 2013

Authors and Affiliations

  • Sébastien Ziegler
    • 1
  • Cedric Crettaz
    • 1
  • Latif Ladid
    • 2
  • Srdjan Krco
    • 3
  • Boris Pokric
    • 3
  • Antonio F. Skarmeta
    • 4
  • Antonio Jara
    • 4
  • Wolfgang Kastner
    • 5
  • Markus Jung
    • 5
  1. 1.Mandat InternationalGenevaSwitzerland
  2. 2.University of LuxembourgLuxembourgLuxembourg
  3. 3.EricssonBelgradeSerbia
  4. 4.University of MurciaMurciaSpain
  5. 5.Vienna University of TechnologyViennaAustria

Personalised recommendations