Agents Vote against Falls: The Agent Perspective in EPRs

  • Sebastian Ahrndt
  • Johannes Fähndrich
  • Sahin Albayrak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7879)


In this work we present an agent-based fall-risk assessment tool which is self-learning. As part of a mobile electronic patient record (EPR) each patient is represented by its agent which helps to lift the treasure of data offered by combining multiple EPRs in order to reveal personalized health-care. To learn from the data provided by the population under care, we enabled the patient agents to negotiate about possible fall-risk indicators using a distributed information fusion and opinion aggregation technique.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahrndt, S., Fähndrich, J., Albayrak, S.: Preventing elderly from falls: The agent perspective in ePRs. In: Demazeau, Y., Ishida, T., Corchado, J.M., Bajo, J. (eds.) PAAMS 2013. LNCS, vol. 7879, pp. 1–12. Springer, Heidelberg (2013)Google Scholar
  2. 2.
    Ahrndt, S., Rieger, A., Albayrak, S.: Entwicklung einer mobilen elektronischen Patientenakte für die ambulante Versorgung in ländlichen Regionen. In: Goltz, U., et al. (eds.) INFORMATIK 2012. LNI, vol. 208, pp. 1167–1181. GI (2012)Google Scholar
  3. 3.
    Fiss, T., Dreier, A., Meinke, C., van den Berg, N., Ritter, C.A., Hoffmann, W.: Frequency of inappropriate drugs in primary care: Analysis of a sample of immobile patients who received periodic home visits. Age and Ageing 40(1), 66–73 (2010)CrossRefGoogle Scholar
  4. 4.
    Fiss, T., Ritter, C.A., Alte, D., van den Berg, N., Hoffmann, W.: Detection of drug related problems in an interdisciplinary health care model for rural areas in germany. Pham. World Sci. 32(5), 566–574 (2010)CrossRefGoogle Scholar
  5. 5.
    Genest, C., McConway, K.J., Schervish, M.J.: Characterization of externally bayesian pooling operators. The Annals of Statistics 14(2), 487–501 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Goth, G.: Analyzing medical data. Communications of the ACM 55(6), 13–15 (2012)CrossRefGoogle Scholar
  7. 7.
    Halpern, J.: From statistical knowledge bases to degrees of belief: An overview. In: Proceedings of PODS 2006, pp. 110–113. ACM, New York (2006)Google Scholar
  8. 8.
    König, H.H.: Gesundheitsökonomische Aspekte der Sturz- und Frakturprävention (March 2012), (last visit: February 19, 2013)
  9. 9.
    Lindley, D.: Theory and practice of bayesian statistics. The Statistician 32(1), 1–11 (1983)CrossRefGoogle Scholar
  10. 10.
    Roback, P.J., Givens, G.H.: Supra-bayesian pooling of priors linked by a deterministic simulation model. Communications in Statistics – Simulation and Computation 30, 447–476 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Schenk, A., Ahrndt, S., Albayrak, S.: Predicting fall risks in electronic patient records. In: Goltz, U., et al. (eds.) INFORMATIK 2012. LNI, vol. 208, pp. 1194–1198. GI (2012)Google Scholar
  12. 12.
    Tonn, J., Kaiser, S.: ASGARD – A graphical monitoring tool for distributed agent infrastructures. In: Demazeau, Y., Dignum, F., Corchado, J.M., Pérez, J.B. (eds.) Advances in PAAMS. AISC, vol. 70, pp. 163–173. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sebastian Ahrndt
    • 1
  • Johannes Fähndrich
    • 1
  • Sahin Albayrak
    • 1
  1. 1.DAI-LaborTechnische Universität BerlinBerlinGermany

Personalised recommendations