How to Build the Best Macroscopic Description of Your Multi-Agent System?

  • Robin Lamarche-Perrin
  • Yves Demazeau
  • Jean-Marc Vincent
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7879)


The design and debugging of large-scale MAS require abstraction tools in order to work at a macroscopic level of description. Agent aggregation provides such abstractions by reducing the complexity of the microscopic description. Since it leads to an information loss, such a key process may be extremely harmful for the analysis if poorly executed. This paper presents measures inherited from information theory to evaluate abstractions and provide the experts with feedback regarding the quality of generated descriptions. Several evaluation techniques are applied to the spatial aggregation of an agent-based model of international relations. The information from on-line newspapers constitutes a complex microscopic description of agent states. Our approach is able to evaluate geographical abstractions used by the domain experts in order to provide efficient and meaningful macroscopic descriptions of the world global state.


Large-scale multi-agent systems agent aggregation macroscopic description information theory geographical and news analysis 


  1. 1.
    Elmqvist, N., Fekete, J.: Hierarchical Aggregation for Information Visualization: Overview, Techniques, and Design Guidelines. IEEE Transactions on Visualization and Computer Graphics 16(3), 439–454 (2010)CrossRefGoogle Scholar
  2. 2.
    Kullback, S., Leibler, R.: On Information and Sufficiency. Annals of Mathematical Statistics 22(1), 79–86 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Shannon, C.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)Google Scholar
  4. 4.
    Gil-Quijano, J., Louail, T., Hutzler, G.: From Biological to Urban Cells: Lessons from Three Multilevel Agent-Based Models. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS (LNAI), vol. 7057, pp. 620–635. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based Simulation Platforms: Review and Development Recommendations. Simulation 82, 609–623 (2006)CrossRefGoogle Scholar
  6. 6.
    Búrdalo, L., Terrasa, A., Julián, V., García-Fornes, A.: A Tracing System Architecture for Self-adaptive Multiagent Systems. In: Demazeau, Y., Dignum, F., Corchado, J.M., Pérez, J.B. (eds.) Advances in PAAMS. AISC, vol. 70, pp. 205–210. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Tonn, J., Kaiser, S.: ASGARD – A Graphical Monitoring Tool for Distributed Agent Infrastructures. In: Demazeau, Y., Dignum, F., Corchado, J.M., Pérez, J.B. (eds.) Advances in PAAMS. AISC, vol. 70, pp. 163–173. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Sharpanskykh, A., Treur, J.: Group Abstraction for Large-Scale Agent-Based Social Diffusion Models with Unaffected Agents. In: Kinny, D., Hsu, J.Y.-j., Governatori, G., Ghose, A.K. (eds.) PRIMA 2011. LNCS (LNAI), vol. 7047, pp. 129–142. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Peng, W., Grushin, A., Manikonda, V., Krueger, W., Carlos, P., Santos, M.: Graph-Based Methods for the Analysis of Large-Scale Multiagent Systems. In: AAMAS 2009, pp. 545–552 (2009)Google Scholar
  10. 10.
    Iravani, P.: Multi-level network analysis of multi-agent systems. In: Iocchi, L., Matsubara, H., Weitzenfeld, A., Zhou, C. (eds.) RoboCup 2008. LNCS (LNAI), vol. 5399, pp. 495–506. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Grasland, C., Didelon, C.: Europe in the World – Final Report. ESPON Project 3.4.1, vol. 1 (2007)Google Scholar
  12. 12.
    United Nations Environment Programme: Global Environmental Outlook: environment for development, Nairobi, vol. 4 (2007)Google Scholar
  13. 13.
    Lamarche-Perrin, R., Vincent, J.M., Demazeau, Y.: Informational Measures of Aggregation for Complex Systems Analysis. Technical Report RR-LIG-026, Laboratoire d’Informatique de Grenoble, France (2012)Google Scholar
  14. 14.
    Csiszár, I.: Axiomatic Characterizations of Information Measures. Entropy 10(3), 261–273 (2008)zbMATHCrossRefGoogle Scholar
  15. 15.
    Deguet, J., Demazeau, Y., Magnin, L.: Element about the Emergence Issue: A Survey of Emergence Definitions. ComPlexUs 3, 24–31 (2006)CrossRefGoogle Scholar
  16. 16.
    Lamarche-Perrin, R., Demazeau, Y., Vincent, J.M.: The Best-partitions Problem: How to Build Meaningful Aggregations? Technical report, Laboratoire d’Informatique de Grenoble, France (forthcoming, 2013)Google Scholar
  17. 17.
    Lamarche-Perrin, R., Schnorr, L.M., Vincent, J.M., Demazeau, Y.: Evaluating Trace Aggregation Through Entropy Measures for Optimal Performance Visualization of Large Distributed Systems. Technical report, Laboratoire d’Informatique de Grenoble, France, RR-LIG-037 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robin Lamarche-Perrin
    • 1
    • 2
  • Yves Demazeau
    • 1
    • 3
  • Jean-Marc Vincent
    • 1
    • 4
  1. 1.Laboratoire d’Informatique de GrenobleFrance
  2. 2.Université de GrenobleFrance
  3. 3.CNRSFrance
  4. 4.Université Joseph FourierFrance

Personalised recommendations