Advertisement

Diversity in Classifier Ensembles: Fertile Concept or Dead End?

  • Luca Didaci
  • Giorgio Fumera
  • Fabio Roli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7872)

Abstract

Diversity is deemed a crucial concept in the field of multiple classifier systems, although no exact definition has been found so far. Existing diversity measures exhibit some issues, both from the theoretical viewpoint, and from the practical viewpoint of ensemble construction. We propose to address some of these issues through the derivation of decompositions of classification error, analogue to the well-known bias-variance-covariance and ambiguity decompositions of regression error. We then discuss whether the resulting decompositions can provide a more clear definition of diversity, and whether they can be exploited more effectively for the practical purpose of ensemble construction.

Keywords

Diversity Bias-variance-covariance decomposition Ambiguity decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: A new ensemble diversity measure applied to thinning ensembles. In: Windeatt, T., Roli, F. (eds.) MCS 2003. LNCS, vol. 2709, pp. 306–316. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: Ensemble diversity measures and their application to thinning. Information Fusion 6, 49–62 (2005)CrossRefGoogle Scholar
  3. 3.
    Breiman, L.: Bias, variance, and arcing classifiers. Technical Report 460, Statistics Department, University of California, Berkeley, CA (1996)Google Scholar
  4. 4.
    Brown, G., Wyatt, J.L., Harris, R., Yao, X.: Diversity creation methods: a survey and categorisation. Information Fusion 6, 5–20 (2005)CrossRefGoogle Scholar
  5. 5.
    Brown, G., Wyatt, J.L., Tino, P.: Managing diversity in regression ensembles. Journal of Machine Learning Research 6, 1621–1650 (2005)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Brown, G.: An information theoretic perspective on multiple classifier systems. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 344–353. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Brown, G., Kuncheva, L.I.: “Good” and “Bad” diversity in majority vote ensembles. In: El Gayar, N., Kittler, J., Roli, F. (eds.) MCS 2010. LNCS, vol. 5997, pp. 124–133. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning 40, 139–157 (2000)CrossRefGoogle Scholar
  9. 9.
    Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Domingos, P.: A unified bias-variance decomposition for zero-one and squared loss. In: 7th Int. Conf. on Artificial Intelligence, pp. 564–569 (2000)Google Scholar
  11. 11.
    Dutta, H.: Measuring Diversity in Regression Ensembles. In: 4th Indian Int. Conf. on Artificial Intelligence, pp. 2220–2236 (2009)Google Scholar
  12. 12.
    Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Computation 4, 1–58 (1992)CrossRefGoogle Scholar
  13. 13.
    Giacinto, G., Roli, F.: Design of effective neural network ensembles for image classification purposes. Image and Vision Computing 19, 699–707 (2001)CrossRefGoogle Scholar
  14. 14.
    Hernandez-Lobato, D., Martinez-Munoz, G., Suarez, A.: Pruning in ordered regression bagging ensembles. In: Int. Joint Conf. Neural Net., pp. 1266–1273 (2006)Google Scholar
  15. 15.
    Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 226–239 (1998)CrossRefGoogle Scholar
  16. 16.
    Ko, A.H.-R., Sabourin, R., DeSouza Britto Jr., A.: Compound diversity functions for ensemble selection. Int. J. Patt. Rec. Artificial Intelligence 23, 659–686 (2009)Google Scholar
  17. 17.
    Kohavi, R., Wolpert, D.H.: Bias plus variance decomposition for zero-one loss functions. In: 13th Int. Conf. Mac. Learn., pp. 275–283. Morgan Kaufmann (1996)Google Scholar
  18. 18.
    Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. In: Adv. in Neural Inf. Proc. Systems, vol. 7, pp. 231–238. MIT Press (1995)Google Scholar
  19. 19.
    Kuncheva, L.I.: That elusive diversity in classifier ensembles. In: Perales, F.J., Campilho, A.C., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS, vol. 2652, pp. 1126–1138. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mac. Learn. 51, 181–207 (2003)zbMATHCrossRefGoogle Scholar
  21. 21.
    Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons, Hoboken (2004)zbMATHCrossRefGoogle Scholar
  22. 22.
    Lam, L., Suen, C.Y.: Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Transactions on Systems, Man, and Cybernetics - Part C 27, 553–568 (1997)CrossRefGoogle Scholar
  23. 23.
    Li, N., Yu, Y., Zhou, Z.-H.: Diversity Regularized Ensemble Pruning. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part I. LNCS, vol. 7523, pp. 330–345. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Littlewood, B., Miller, D.R.: Conceptual modeling of coincident failures in multiversion software. IEEE Transactions on Software Engineering 15, 1596–1614 (1989)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Liu, Y.: Negative Correlation Learning and Evolutionary Neural Network Ensembles. PhD thesis, University College, The University of New South Wales, Australian Defence Force Academy, Canberra, Australia (1998)Google Scholar
  26. 26.
    Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: 14th Int. Conf. on Machine Learning, pp. 211–218 (1997)Google Scholar
  27. 27.
    Partalas, I., Tsoumakas, G., Hatzikos, E.V., Vlahavas, I.P.: Greedy regression ensemble selection: Theory and an application to water quality prediction. Information Sciences 178, 3867–3879 (2008)CrossRefGoogle Scholar
  28. 28.
    Partridge, D., Krzanowski, W.J.: Software diversity: practical statistics for its measurement and exploitation. Information & Software Technology 39, 707–717 (1997)CrossRefGoogle Scholar
  29. 29.
    Perrone, M.P., Cooper, L.N.: When networks disagree: Ensemble methods for neural networks. In: Mammone, R.J. (ed.) Artificial Neural Networks for Spech and Vision, pp. 126–142. Chapman & Hall, New York (1993)Google Scholar
  30. 30.
    Rooney, N., Patterson, D., Nugent, C.: Reduced ensemble size stacking. In: 16th Int. Conf. on Tools with Artificial Intelligence, pp. 266–271 (2004)Google Scholar
  31. 31.
    Sharkey, A.J.C., Sharkey, N.E.: Combining diverse neural nets. The Knowledge Engineering Review 12, 231–247 (1997)CrossRefGoogle Scholar
  32. 32.
    Shipp, C.A., Kuncheva, L.I.: Relationships between combination methods and measures of diversity in combining classifiers. Information Fusion 3, 135–148 (2002)CrossRefGoogle Scholar
  33. 33.
    Sirlantzis, K., Hoque, S., Fairhurst, M.C.: Diversity in multiple classifier ensembles based on binary feature quantisation with application to face recognition. Applied Soft Computing 8, 437–445 (2008)CrossRefGoogle Scholar
  34. 34.
    Sun, Q., Pfahringer, B.: Bagging Ensemble Selection for Regression. In: Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS, vol. 7691, pp. 695–706. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  35. 35.
    Tang, E.K., Suganthan, P.N., Yao, X.: An analysis of diversity measures. Machine Learning 65, 247–271 (2006)CrossRefGoogle Scholar
  36. 36.
    Tumer, K., Ghosh, J.: Analysis of decision boundaries in linearly combined neural classifiers. Pattern Recognition 29, 341–348 (1996)CrossRefGoogle Scholar
  37. 37.
    Ueda, N., Nakano, R.: Generalization error of ensemble estimators. In: Int. Conf. on Neural Networks, pp. 90–95 (1996)Google Scholar
  38. 38.
    Wang, D., Alhamdoosh, M.: Evolutionary extreme learning machine ensembles with size control. Neurocomputing 102, 98–110 (2013)CrossRefGoogle Scholar
  39. 39.
    Yu, Y., Zhou, Z.-H., Ting, K.M.: Cocktail Ensemble for Regression. In: 7th Int. Conf. Data Mining, pp. 721–726. IEEE Computer Society (2007)Google Scholar
  40. 40.
    Yu, Y., Li, Y.-F., Zhou, Z.-H.: Diversity regularized machine. In: 22nd Int. Joint Conf. on Artificial Intelligence, pp. 1603–1608 (2011)Google Scholar
  41. 41.
    Zenobi, G., Cunningham, P.: Using Diversity in Preparing Ensembles of Classifiers Based on Different Feature Subsets to Minimize Generalization Error. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 576–587. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  42. 42.
    Zhang, M.-L., Zhou, Z.-H.: Exploiting unlabeled data to enhance ensemble diversity. Data Min. Knowl. Disc. 26, 98–129 (2013)zbMATHCrossRefGoogle Scholar
  43. 43.
    Zhou, Z.-H., Wu, J., Tang, W.: Ensembling neural networks: many could be better than all. Artificial Intelligence 137, 239–263 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Zhou, Z.-H., Li, N.: Multi-information Ensemble Diversity. In: El Gayar, N., Kittler, J., Roli, F. (eds.) MCS 2010. LNCS, vol. 5997, pp. 134–144. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  45. 45.
    Yu, Y., Li, Y.-F., Zhou, Z.-H.: Diversity regularized machine. In: Proc. 22nd Int. Joint Conf. on Artificial Intelligence, pp. 1603–1608 (2011)Google Scholar
  46. 46.
    Zhou, Z.-H.: Introduction to Ensemble Methods. CRC Press (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luca Didaci
    • 1
  • Giorgio Fumera
    • 1
  • Fabio Roli
    • 1
  1. 1.Dept. of Electrical and Electronic EngineeringUniversity of CagliariCagliariItaly

Personalised recommendations