Advertisement

Extracting Behavioural Patterns from a Negotiation Game

  • Marco Gomes
  • Tiago Oliveira
  • Davide Carneiro
  • Paulo Novais
  • José Neves
Part of the Communications in Computer and Information Science book series (CCIS, volume 365)

Abstract

The work presented focuses not only on the behavioural patterns that influence the outcome of a negotiation, but also on the discovery of ways to predict the type of conflict used in the process and the stress levels of the actors. After setting up an experimental intelligent environment provided with sensors to capture behavioural and contextual information, a set of relevant data was collected and analysed, with the underlying objective of using the behavioural patterns (obtained by statistical/probabilistic methods) as a basis to design and present plans and suggestions to the associated participants. In sooth, these proposals may influence in a positive way the course and outcome of a negotiation task in many aspects. This work highlights the importance of knowledge in negotiation, as in other social forms of interaction, providing also some new insights for informed decision support in situations in which uncertainty and conflict may be present.

Keywords

Intelligent Environments Online Dispute Resolution Negotiation Context-Aware 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Raiffa, H.: The art and science of negotiation: how to resolve conflicts and get the best out of bargaining. The Belknap Press of Harvard University Press (1982)Google Scholar
  2. 2.
    Ye, J., Coyle, L., Dobson, S., Nixon, P.: Using situation lattices to model and reason about context. In: Proceedings of MRC 2007: The Workshop of Modeling and Reasoning Context (coexist with CONTEXT 2007), Roskilde, Denmark, pp. 1–12 (August 2007)Google Scholar
  3. 3.
    Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive and Mobile Computing 6(2), 161–180 (2010)CrossRefGoogle Scholar
  4. 4.
    Carneiro, D., Gomes, M., Novais, P., Neves, J.: Developing dynamic conflict resolution models based on the interpretation of personal conflict styles. In: Antunes, L., Pinto, H.S. (eds.) EPIA 2011. LNCS, vol. 7026, pp. 44–58. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Gomes, M., Carneiro, D., Novais, P., Neves, J.: Modelling stress recognition in conflict resolution scenarios. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part I. LNCS, vol. 7208, pp. 533–544. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Cooper, J.O., Heron, T.E., Heward, W.L.: Applied Behavior Analysis. Prentice Hall (1987)Google Scholar
  7. 7.
    Castillo, J.C., Rivas-Casado, A., Fernández-Caballero, A., López, M.T., Martínez-Tomás, R.: A multisensory monitoring and interpretation framework based on the model–view–controller paradigm. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2011, Part I. LNCS, vol. 6686, pp. 441–450. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Fernández-Caballero, A., Castillo, J.C., Martínez-Cantos, J., Martínez-Tomás, R.: Optical flow or image subtraction in human detection from infrared camera on mobile robot. Robotics and Autonomous Systems 58(12), 1273–1281 (2010); Intelligent Robotics and NeuroscienceGoogle Scholar
  9. 9.
    Carneiro, D., Castillo, J.C., Novais, P., Fernández-Caballero, A., Neves, J.: Multimodal behavioral analysis for non-invasive stress detection. Expert Systems with Applications 39(18), 13376–13389 (2012)CrossRefGoogle Scholar
  10. 10.
    Carneiro, D., Gomes, M., Novais, P., Andrade, F., Neves, J.: Automatic classification of personal conflict styles in conflict resolution. In: Atkinson, K.M. (ed.) Legal Knowledge and Information Systems - JURIX 2011: The Twenty-Fourth Annual Conference, pp. 43–52. IOS Press (2011)Google Scholar
  11. 11.
    Sheridan, F.: A survey of techniques for inference under uncertainty. Artificial Intelligence Review 5(1), 89–119 (1991)CrossRefGoogle Scholar
  12. 12.
    Jensen, F.V.: Bayesian networks. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 307–315 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marco Gomes
    • 1
  • Tiago Oliveira
    • 1
  • Davide Carneiro
    • 1
  • Paulo Novais
    • 1
  • José Neves
    • 1
  1. 1.Department of InformaticsUniversity of MinhoPortugal

Personalised recommendations