Advertisement

A Negotiation Approach for Energy-Aware Room Allocation Systems

  • Sergio Esparcia
  • Victor Sánchez-Anguix
  • Reyhan Aydoğan
Part of the Communications in Computer and Information Science book series (CCIS, volume 365)

Abstract

This paper addresses energy-aware room allocation management where the system aims to satisfy individuals’ needs as much as possible while concerning total energy consumption in a building. In the problem, there are a several rooms having varied settings resulting in different energy consumption. The main objective of the system is not only finding the right allocations for user’s need, but also minimizing energy consumption. However, the users of the system may have conflicting preferences over the rooms to be allocated for them. This paper pursues how the system can increase user satisfaction while achieving its goals. For that purpose, an adaptation of the mediated single text negotiation model is introduced. The proposal seeks to guarantee an upper bound on energy consumption by pruning the negotiation space via a genetic algorithm, and to take advantage of the negotiation for increasing user satisfaction. Experiments suggest that the adaptations improve the performance.

Keywords

automated negotiation room allocation energy consumption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perez-Lombard, L., Ortiz, J., Pout, C.: A review on buildings energy consumption information. Energy and Buildings 40(3), 394–398 (2008)CrossRefGoogle Scholar
  2. 2.
    Plan de ahorro de eficiencia energética de los edificios públicos de la generalitat. Diari oficial de la Comunitat Valenciana (6800), 18038–18044 (June 2012)Google Scholar
  3. 3.
    Sorici, A., Boissier, O., Picard, G., Santi, A.: Exploiting the jacamo framework for realising an adaptive room governance application. In: Proc. DSM 2011, TMC 2011, AGERE! 2011, AOOPES 2011, NEAT 2011, & VMIL 2011, pp. 239–242. ACM (2011)Google Scholar
  4. 4.
    Klein, M., Faratin, P., Sayama, H., Bar-Yam, Y.: Negotiating complex contracts. Group Decision and Negotiation 12, 111–125 (2003)CrossRefGoogle Scholar
  5. 5.
    Sareni, B., Krahenbuhl, L.: Fitness sharing and niching methods revisited. IEEE Transactions on Evolutionary Computation 2(3), 97–106 (1998)CrossRefGoogle Scholar
  6. 6.
    Mengshoel, O.J., Goldberg, D.E.: The crowding approach to niching in genetic algorithms. Evolutionary Computation 16(3), 315–354 (2008)CrossRefGoogle Scholar
  7. 7.
    Sanchez-Anguix, V., Valero, S., Julian, V., Botti, V., Garcia-Fornes, A.: Evolutionary-aided negotiation model for bilateral bargaining in ambient intelligence domains with complex utility functions. Information Sciences 222, 25–46 (2013)CrossRefGoogle Scholar
  8. 8.
    Kuo, P., Schroeder, R., Mahaffey, S., Bollinger, R.: Optimization of operating room allocation using linear programming techniques. J. Am. Coll. Surg. 197(6), 889–895 (2003)CrossRefGoogle Scholar
  9. 9.
    Schumann, A., Wilson, N., Burillo, M.: Learning user preferences to maximise occupant comfort in office buildings. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010, Part I. LNCS (LNAI), vol. 6096, pp. 681–690. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Abras, S., Pesty, S., Ploix, S., Jacomino, M.: An anticipation mechanism for power management in a smart home using multi-agent systems. In: Information and Communication Technologies: From Theory to Applications, pp. 1–6. IEEE (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sergio Esparcia
    • 1
  • Victor Sánchez-Anguix
    • 1
  • Reyhan Aydoğan
    • 2
  1. 1.Departamento de Sistemas Informáticos y ComputaciónUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.Interactive Intelligence GroupDelft University of TechnologyDelftThe Netherlands

Personalised recommendations