Analysis of Gait Recognition on Constrained Scenarios with Limited Data Information

  • Ruben Vera-Rodriguez
  • S. Gabriel-Sanz
  • Julian Fierrez
  • Pedro Tome
  • J. Ortega-Garcia
Part of the Communications in Computer and Information Science book series (CCIS, volume 365)

Abstract

This paper is focused on the assessment of gait recognition on a constrained scenario, where limited information can be extracted from the gait image sequences. In particular we are interested in assessing the performance of gait images when only the lower part of the body is acquired by the camera and just half of a gait cycle is available (SFootBD database). Thus, various state-of-the-art feature approaches have been followed and applied to the data. Results show that good recognition performance can be achieved using such limited data information for gait biometric. A comparative analysis of the influence of the quantity of data used in the training models has been carried out obtaining results of 8.6% EER for the case of using 10 data samples to train the models, and 5.7% of EER for the case of using 40 data for training. Also, a comparison with a standard and ideal gait database (USF database) is also carried out using similar experimental protocols. In this case 10 data samples are used for training achieving results of 3.6% EER. The comparison with a standard database shows that different feature approaches perform differently for each database, achieving best individual results with MPCA and EGEI methods for the SFootBD and the USF databases respectively.

Keywords

Biometrics gait recognition video surveillance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Nixon, M., Bouchrika, I., Arbab-Zavar, B., Carter, J.: On the use of biometrics in forensics: gait and ear. In: Proc. of European Signal Processing Conference, EUSIPCO (2010)Google Scholar
  3. 3.
    Trivino, G., Alvarez-Alvarez, A., Bailador, G.: Application of the computational theory of perceptions to human gait pattern recognition. Pattern Recognition 43(7), 2572–2581 (2010)MATHCrossRefGoogle Scholar
  4. 4.
    Han, S., Zhi-Wu, L., Guo-Yue, C.: A gait recognition method using L1-PCA and LDA. In: Proc. International Conference on Machine Learning and Cybernetics, vol. 6, pp. 3198–3203 (2009)Google Scholar
  5. 5.
    Vera-Rodriguez, R., Mason, J., Fierrez, J., Ortega-Garcia, J.: Comparative analysis and fusion of spatio-temporal information for footstep recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 99 (2012)Google Scholar
  6. 6.
    Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The humanID gait challenge problem: data sets, performance, and analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(2), 162–177 (2005)CrossRefGoogle Scholar
  7. 7.
    Nixon, M.S., Carter, J.N.: Automatic recognition by gait. Proceedings of the IEEE 94(11), 2013–2024 (2006)CrossRefGoogle Scholar
  8. 8.
    Zhang, E., Zhao, Y., Xiong, W.: Active energy image plus 2DLPP for gait recognition. Signal Processing 90(7), 2295–2302 (2010)MATHCrossRefGoogle Scholar
  9. 9.
    Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: Multilinear principal component analysis of tensor objects for recognition. In: Proc. of the 18th International Conference on Pattern Recognition, vol. 2, pp. 776–779 (2006)Google Scholar
  10. 10.
    Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2006)CrossRefGoogle Scholar
  11. 11.
    Yang, X., Zhou, Y., Zhang, T., Shu, G., Yang, J.: Gait recognition based on dynamic region analysis. Signal Processing 88(9), 2350–2356 (2008)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ruben Vera-Rodriguez
    • 1
  • S. Gabriel-Sanz
    • 1
  • Julian Fierrez
    • 1
  • Pedro Tome
    • 1
  • J. Ortega-Garcia
    • 1
  1. 1.ATVS, Escuela Politecnica SuperiorUniversidad Autonoma de MadridSpain

Personalised recommendations