Advertisement

Ellipsoid-Weighted Protein Conformation Alignment

  • Hyuntae Na
  • Guang Song
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7875)

Abstract

Conformation alignment is a critical step for properly interpreting protein motions and conformational changes. The most widely used approach for superposing two conformations is by minimizing their root mean square distance (RMSD). In this work, we treat the alignment problem from a novel energy-minimization perspective. To this end we associate each atom in the protein with a mean-field potential well, whose shape, ellipsoidal in general, is to be inferred from the observed or computed fluctuations of that atom around its mean position. The scales and directions of the fluctuations can be obtained experimentally from anisotropic B-factors for crystal structures or computationally. We then show that this “ellipsoid-weighted” RMSD alignment can be reformulated nicely as a point-to-plane matching problem studied in computational geometry. This new alignment method is a generalization of standard RMSD and Gaussian-weighted RMSD alignment. It is heavily weighted by immobile regions and immobile directions of the protein and hence highlights the directional motions of the flexible parts. It has an additional advantage of aligning conformations of proteins along their preferred directions of motions and could be applied to order protein conformations along its trajectory.

Keywords

conformation alignment conformation change root mean square distance ellipsoid-weighted alignment ensemble alignment point-to-plane matching computational geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9, 646–652 (2002)CrossRefGoogle Scholar
  2. 2.
    Tama, F., Sanejouand, Y.H.: Conformational change of proteins arising from normal mode calculations. Protein Eng. 14, 1–6 (2001)CrossRefGoogle Scholar
  3. 3.
    Atilgan, A.R., Durell, S.R., Jernigan, R.L., Demirel, M.C., Keskin, O., Bahar, I.: Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J. 80, 505–515 (2001)CrossRefGoogle Scholar
  4. 4.
    Song, G., Jernigan, R.L.: An enhanced elastic network model to represent the motions of domain-swapped proteins. Proteins 63, 197–209 (2006)CrossRefGoogle Scholar
  5. 5.
    Henzler-Wildman, K., Kern, D.: Dynamic personalities of proteins. Nature 450, 964–972 (2007)CrossRefGoogle Scholar
  6. 6.
    Dror, R.O., Dirks, R.M., Grossman, J.P., Xu, H., Shaw, D.E.: Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys 41, 429–452 (2012)CrossRefGoogle Scholar
  7. 7.
    Kabsch, W.: Solution for Best Rotation to Relate 2 Sets of Vectors. Acta Crystallogr. A 32, 922–923 (1976)CrossRefGoogle Scholar
  8. 8.
    Mclachlan, A.D.: Rapid Comparison of Protein Structures. Acta Crystallogr. A 38, 871–873 (1982)CrossRefGoogle Scholar
  9. 9.
    Kabsch, W.: Discussion of Solution for Best Rotation to Relate 2 Sets of Vectors. Acta Crystallogr. A 34, 827–828 (1978)CrossRefGoogle Scholar
  10. 10.
    Coutsias, E.A., Seok, C., Dill, K.A.: Using quaternions to calculate RMSD. J. Comput. Chem. 25, 1849–1857 (2004)CrossRefGoogle Scholar
  11. 11.
    Khazanov, N.A., Damm-Ganamet, K.L., Quang, D.X., Carlson, H.A.: Overcoming sequence misalignments with weighted structural superposition. Proteins 80, 2523–2535 (2012)CrossRefGoogle Scholar
  12. 12.
    Wriggers, W., Schulten, K.: Protein domain movements: Detection of rigid domains and visualization of hinges in comparisons of atomic coordinates. Proteins-Structure Function and Genetics 29, 1–14 (1997)Google Scholar
  13. 13.
    Irving, J.A., Whisstock, J.C., Lesk, A.M.: Protein structural alignments and functional genomics. Proteins 42, 378–382 (2001)CrossRefGoogle Scholar
  14. 14.
    Damm, K.L., Carlson, H.A.: Gaussian-weighted RMSD superposition of proteins: A structural comparison for flexible proteins and predicted protein structures. Biophysical Journal 90, 4558–4573 (2006)CrossRefGoogle Scholar
  15. 15.
    Theobald, D.L., Wuttke, D.S.: Empirical Bayes hierarchical models for regularizing maximum likelihood estimation in the matrix Gaussian Procrustes problem. Proc. Natl. Acad. Sci. U S A 103, 18521–18527 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Theobald, D.L., Wuttke, D.S.: THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures. Bioinformatics 22, 2171–2172 (2006)CrossRefGoogle Scholar
  17. 17.
    Liu, Y.S., Fang, Y., Ramani, K.: Using least median of squares for structural superposition of flexible proteins. BMC Bioinformatics 10, 29 (2009)CrossRefGoogle Scholar
  18. 18.
    Yang, L., Song, G., Jernigan, R.L.: Comparisons of experimental and computed protein anisotropic temperature factors. Proteins 76, 164–175 (2009)CrossRefGoogle Scholar
  19. 19.
    Liu, P., Agrafiotis, D.K., Theobald, D.L.: Fast determination of the optimal rotational matrix for macromolecular superpositions. J. Comput. Chem. 31, 1561–1563 (2010)Google Scholar
  20. 20.
    Horn, B.K.P.: Closed-Form Solution of Absolute Orientation Using Unit Quaternions. J. Opt. Soc. Am A 4, 629–642 (1987)CrossRefGoogle Scholar
  21. 21.
    Besl, P.J., Mckay, N.D.: A Method for Registration of 3-D Shapes. IEEE T Pattern Anal. 14, 239–256 (1992)CrossRefGoogle Scholar
  22. 22.
    Gerstein, M., Krebs, W.: A database of macromolecular motions. Nucleic Acids Res. 26, 4280–4290 (1998)CrossRefGoogle Scholar
  23. 23.
    Chen, Y., Medioni, G.: Object Modeling by Registration of Multiple Range Images. Image Vision Comput. 10, 145–155 (1992)CrossRefGoogle Scholar
  24. 24.
    Low, K.-L.: Linear Least-Squares Optimization for Point-to-Place ICP Surface Registration. Chapel Hill, University of North Carolina (2004)Google Scholar
  25. 25.
    Yang, L., Song, G., Jernigan, R.L.: How well can we understand large-scale protein motions using normal modes of elastic network models? Biophys J. 93, 920–929 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hyuntae Na
    • 1
  • Guang Song
    • 1
  1. 1.Department of Computer ScienceIowa State UniversityAmesUSA

Personalised recommendations