Heuristic Algorithms for the Protein Model Assignment Problem

  • Jörg Hauser
  • Kassian Kobert
  • Fernando Izquierdo-Carrasco
  • Karen Meusemann
  • Bernhard Misof
  • Michael Gertz
  • Alexandros Stamatakis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7875)

Abstract

Assigning an optimal combination of empirical amino acid substitution models (e.g., WAG, LG, MTART) to partitioned multi-gene datasets when branch lengths across partitions are linked, is suspected to be an NP-hard problem. Given p partitions and the approximately 20 empirical protein models that are available, one needs to compute the log likelihood score of 20p possible model-to-partition assignments for obtaining the optimal assignment.

Initially, we show that protein model assignment (PMA) matters for empirical datasets in the sense that different (optimal versus suboptimal) PMAs can yield distinct final tree topologies when tree searches are conducted using RAxML.

In addition, we introduce and test several heuristics for finding near-optimal PMAs and present generally applicable techniques for reducing the execution times of these heuristics. We show that our heuristics can find PMAs with better log likelihood scores on a fixed, reasonable tree topology than the naïve approach to the PMA, which ignores the fact that branch lengths are linked across partitions. By re-analyzing a large empirical dataset, we show that phylogenies inferred under a PMA calculated by our heuristics have a different topology than trees inferred under a naïvely calculated PMA; these differences also induce distinct biological conclusions. The heuristics have been implemented and are available in a proof-of-concept version of RAxML.

Keywords

phylogenetic inference maximum likelihood model assignment protein data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tavaré, S.: Some probabilistic and statistical problems in the analysis of DNA sequences. Some Mathematical Questions in Biology-DNA Sequence Analysis 17, 57–86 (1986)Google Scholar
  2. 2.
    Abascal, F., Posada, D., Zardoya, R.: Mtart: a new model of amino acid replacement for arthropoda. Mol. Biol. Evol. 24(1), 1–5 (2007)CrossRefGoogle Scholar
  3. 3.
    Whelan, S., Goldman, N.: A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18(5), 691–699 (2001)CrossRefGoogle Scholar
  4. 4.
    Le, S., Gascuel, O.: An improved general amino acid replacement matrix. Mol. Biol. Evol. 25(7), 1307–1320 (2008)CrossRefGoogle Scholar
  5. 5.
    Sullivan, J., Swofford, D.: Are guinea pigs rodents? The importance of adequate models in molecular phylogenetics. J. Mamm. Evol. 4(2), 77–86 (1997)CrossRefGoogle Scholar
  6. 6.
    Keane, T., Creevey, C., Pentony, M., Naughton, T., Mclnerney, J.: Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol. 6(1), 29 (2006)Google Scholar
  7. 7.
    Lanfear, R., Calcott, B., Ho, S., Guindon, S.: Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29(6), 1695–1701 (2012)CrossRefGoogle Scholar
  8. 8.
    Meusemann, K., von Reumont, B., Simon, S., Roeding, F., Strauss, S., Kück, P., Ebersberger, I., Walzl, M., Pass, G., Breuers, S., et al.: A phylogenomic approach to resolve the arthropod tree of life. Mol. Biology Evol. 27(11), 2451–2464 (2010)CrossRefGoogle Scholar
  9. 9.
    Yutin, N., Puigbò, P., Koonin, E., Wolf, Y.: Phylogenomics of Prokaryotic Ribosomal Proteins. PloS ONE 7(5) (2012)Google Scholar
  10. 10.
    Stamatakis, A., Ludwig, T., Meier, H.: RAxML-III: A Fast Program for Maximum Likelihood-based Inference of Large Phylogenetic Trees. Bioinformatics 21(4), 456–463 (2005)CrossRefGoogle Scholar
  11. 11.
    Kobert, K., Hauser, J., Stamatakis, A.: Is the Protein Model Assignment Problem NP-hard?; Exelixis-RRDR-2012-9; Technical report, Heidelberg Institute for Theoretical Studies (October 2012), http://sco.h-its.org/exelixis/pubs/Exelixis-RRDR-2012-9.pdf
  12. 12.
    Posada, D.: In: Selection of Phylogenetic Models of Molecular Evolution. John Wiley & Sons, Ltd. (2001)Google Scholar
  13. 13.
    Abascal, F., Zardoya, R., Posada, D.: Prottest: selection of best-fit models of protein evolution. Bioinformatics 21(9), 2104–2105 (2005)CrossRefGoogle Scholar
  14. 14.
    Tanabe, A.: Kakusan4 and aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Mol. Ecol. Resources 11(5), 914–921 (2011)CrossRefGoogle Scholar
  15. 15.
    Yang, Z.: Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol. & Evol. 11(9), 367–372 (1996)CrossRefGoogle Scholar
  16. 16.
    Yang, Z.: Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites. J. Mol. Evol. 39, 306–314 (1994)CrossRefGoogle Scholar
  17. 17.
    Hauser, J.: Algorithms for Model Assignment in Multi-Gene Phylogenetics. Master’s thesis, Ruprecht-Karls University Heidelberg (2012)Google Scholar
  18. 18.
    Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671 (1983)Google Scholar
  19. 19.
    Aarts, E., Laarhoven, P.: Simulated annealing: an introduction. Stat. Neerland. 43(1), 31–52 (1989)MATHCrossRefGoogle Scholar
  20. 20.
    Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006)CrossRefGoogle Scholar
  21. 21.
    Robinson, D., Foulds, L.: Comparison of phylogenetic trees. Math. Biosci. 53(1-2), 131–147 (1981)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Yutin, N., Puigbò, P., Koonin, E., Wolf, Y.: Phylogenomics of Prokaryotic Ribosomal Proteins. PloS ONE 7(5), e36972 (2012)Google Scholar
  23. 23.
    Fletcher, W., Yang, Z.: Indelible: a flexible simulator of biological sequence evolution. Mol. Biol. Evol. 26(8), 1879–1888 (2009)CrossRefGoogle Scholar
  24. 24.
    Grimaldi, D.: 400 million years on six legs: On the origin and early evolution of Hexapoda. Arthropod Struct. & Dev. 39(2), 191–203 (2010)CrossRefGoogle Scholar
  25. 25.
    Trautwein, M., Wiegmann, B., Beutel, R., Kjer, K., Yeates, D.: Advances in insect phylogeny at the dawn of the postgenomic era. Ann. R. Entomol. 57, 449–468 (2012)CrossRefGoogle Scholar
  26. 26.
    Letsch, H., Meusemann, K., Wipfler, B., Schütte, K., Beutel, R., Misof, B.: Insect phylogenomics: results, problems and the impact of matrix composition. Proc. Royal Soc. B 279(1741), 3282–3290 (2012)CrossRefGoogle Scholar
  27. 27.
    von Reumont, B., Jenner, R., Wills, M., Dell’Ampio, E., Pass, G., Ebersberger, I., Meyer, B., Koenemann, S., Iliffe, T., Stamatakis, A., et al.: Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Mol. Biol. Evol. 29(3), 1031–1045 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jörg Hauser
    • 1
  • Kassian Kobert
    • 1
  • Fernando Izquierdo-Carrasco
    • 1
  • Karen Meusemann
    • 3
  • Bernhard Misof
    • 3
  • Michael Gertz
    • 2
  • Alexandros Stamatakis
    • 1
  1. 1.Heidelberg Institute for Theoretical StudiesHeidelbergGermany
  2. 2.Institute of Computer ScienceHeidelberg UniversityHeidelbergGermany
  3. 3.Zentrum für molekulare BiodiversitätsforschungZoologisches Forschungsmuseum Alexander KoenigBonnGermany

Personalised recommendations