Online Primal-Dual for Non-linear Optimization with Applications to Speed Scaling

  • Anupam Gupta
  • Ravishankar Krishnaswamy
  • Kirk Pruhs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7846)

Abstract

We give a principled method to design online algorithms (for potentially non-linear problems) using a mathematical programming formulation of the problem, and also to analyze the competitiveness of the resulting algorithm using the dual program. This method can be viewed as an extension of the online primal-dual method for linear programming problems, to nonlinear programs. We show the application of this method to two online speed-scaling problems: one involving scheduling jobs on a speed scalable processor so as to minimize energy plus an arbitrary sum scheduling objective, and one involving routing virtual circuit connection requests in a network of speed scalable routers so as to minimize the aggregate power or energy used by the routers. This analysis shows that competitive algorithms exist for problems that had resisted analysis using the dominant potential function approach in the speed-scaling literature, and provides alternate cleaner analysis for other known results. This gives us another tool in the design and analysis of primal-dual algorithms for online problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Im, S., Moseley, B., Pruhs, K.: A tutorial on amortized local competitiveness in online scheduling. SIGACT News 42(2), 83–97 (2011)CrossRefGoogle Scholar
  2. 2.
    Becchetti, L., Leonardi, S., Marchetti-Spaccamela, A., Pruhs, K.: Online weighted flow time and deadline scheduling. Journal of Discrete Algorithms 4(3), 339–352 (2006)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. SIAM J. Comput. 39(4), 1294–1308 (2009)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Andrews, M., Antonakopoulos, S., Zhang, L.: Energy-aware scheduling algorithms for network stability. In: INFOCOM, pp. 1359–1367 (2011)Google Scholar
  5. 5.
    Buchbinder, N., Naor, J.S.: The design of competitive online algorithms via a primal-dual approach. Foundations and Trends in Theoretical Computer Science 3(2-3), 93–263 (2009)MathSciNetGoogle Scholar
  6. 6.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)MATHGoogle Scholar
  7. 7.
    Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In: Proc. IEEE Symposium on Foundations of Computer Science, pp. 374–382 (1995)Google Scholar
  8. 8.
    Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature. Journal of the ACM 54(1) (2007)Google Scholar
  9. 9.
    Bansal, N., Bunde, D.P., Chan, H.L., Pruhs, K.: Average rate speed scaling. Algorithmica 60(4), 877–889 (2011)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Bansal, N., Chan, H.-L., Pruhs, K., Katz, D.: Improved bounds for speed scaling in devices obeying the cube-root rule. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 144–155. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization. ACM Transactions on Algorithms 3(4), 49 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bansal, N., Chan, H.L., Pruhs, K.: Speed scaling with an arbitrary power function. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 693–701 (2009)Google Scholar
  13. 13.
    Lam, T., Lee, L., To, I., Wong, P.: Speed scaling functions based for flow time scheduling based on active job count. In: European Symposium on Algorithms, pp. 647–659 (2008)Google Scholar
  14. 14.
    Andrew, L.L.H., Lin, M., Wierman, A.: Optimality, fairness, and robustness in speed scaling designs. In: SIGMETRICS, pp. 37–48 (2010)Google Scholar
  15. 15.
    Chan, H.L., Edmonds, J., Lam, T.W., Lee, L.K., Marchetti-Spaccamela, A., Pruhs, K.: Nonclairvoyant speed scaling for flow and energy. In: Symposium on Theoretical Aspects of Computer Science, pp. 255–264 (2009)Google Scholar
  16. 16.
    Chan, S.H., Lam, T.W., Lee, L.K.: Non-clairvoyant speed scaling for weighted flow time. In: European Symposium on Algorithms, pp. 23–35 (2010)Google Scholar
  17. 17.
    Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing of virtual circuits with applications to load balancing and machine scheduling. Journal of the ACM 44(3), 486–504 (1997)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Awerbuch, B., Azar, Y., Grove, E.F., Kao, M.Y., Krishnan, P., Vitter, J.S.: Load balancing in the Lp norm. In: IEEE Symposium on Foundations of Computer Science, pp. 383–391 (1995)Google Scholar
  19. 19.
    Albers, S.: Energy-efficient algorithms. Communications of the ACM 53(5), 86–96 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Caragiannis, I.: Better bounds for online load balancing on unrelated machines. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 972–981. ACM, New York (2008)Google Scholar
  21. 21.
    Azar, Y., Epstein, A.: Convex programming for scheduling unrelated parallel machines. In: ACM Symposium on Theory of Computing, pp. 331–337. ACM, New York (2005)Google Scholar
  22. 22.
    Anil Kumar, V.S., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: A unified approach to scheduling on unrelated parallel machines. Journal of the ACM 56(5), Art. 28, 31 (2009)Google Scholar
  23. 23.
    Andrews, M., Antonakopoulos, S., Zhang, L.: Minimum-cost network design with (dis)economies of scale. In: IEEE Symposium on Foundations of Computer Science, pp. 585–592 (2010)Google Scholar
  24. 24.
    Gupta, A., Im, S., Krishnaswamy, R., Moseley, B., Pruhs, K.: Scheduling jobs with varying parallelizability to reduce variance. In: ACM Symposium on Parallelism in Algorithms and Architectures, pp. 11–20 (2010)Google Scholar
  25. 25.
    Im, S., Moseley, B.: Online scalable algorithm for minimizing lk-norms of weighted flow time on unrelated machines. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 95–108 (2011)Google Scholar
  26. 26.
    Anand, S., Garg, N., Kumar, A.: Resource augmentation for weighted flow-time explained by dual fitting. In: ACM-SIAM Symposium on Discrete Algorithms (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anupam Gupta
    • 1
  • Ravishankar Krishnaswamy
    • 2
  • Kirk Pruhs
    • 3
  1. 1.Computer Science DepartmentCarnegie Mellon UniversityPittsburghUSA
  2. 2.Computer Science DepartmentPrinceton UniversityPrincetonUSA
  3. 3.Computer Science DepartmentUniversity of PittsburghPittsburghUSA

Personalised recommendations