Advertisement

Accessing Relational Data on the Web with SparqlMap

  • Jörg Unbehauen
  • Claus Stadler
  • Sören Auer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7774)

Abstract

The vast majority of the structured data of our age is stored in relational databases. In order to link and integrate this data on the Web, it is of paramount importance to make relational data available according to the RDF data model and associated serializations. In this article we present SparqlMap, a SPARQL-to-SQL rewriter based on the specifications of the W3C R2RML working group. The rationale is to enable SPARQL querying on existing relational databases by rewriting a SPARQL query to exactly one corresponding SQL query based on mapping definitions expressed in R2RML. The SparqlMap process of rewriting a query on a mapping comprises the three steps (1) mapping candidate selection, (2) query translation, and (3) query execution. We showcase our SparqlMap implementation and benchmark data that demonstrates that SparqlMap outperforms the current state-of-the-art.

Keywords

Triplification SPARQL RDB2RDF R2RML 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mapping relational data to rdf with virtuoso’s rdf views, http://virtuoso.openlinksw.com/whitepapers/relational%20rdf%20views%20mapping.html
  2. 2.
    Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify - light-weight linked data publication from relational databases. In: 18th International World Wide Web Conference, p. 621 (April 2009)Google Scholar
  3. 3.
    Bizer, C., Cyganiak, R.: D2r server – publishing relational databases on the semantic web. Poster at the 5th Int. Semantic Web Conf., ISWC 2006 (2006)Google Scholar
  4. 4.
    Bizer, C., Schultz, A.: The berlin SPARQL benchmark. Int. J. Semantic Web Inf. Syst. 5(2), 1–24 (2009)CrossRefGoogle Scholar
  5. 5.
    Chebotko, A., Lu, S., Fotouhi, F.: Semantics preserving sparql-to-sql translation. Data and Knowledge Engineering 68(10), 973–1000 (2009)CrossRefGoogle Scholar
  6. 6.
    Cyganiak, R.: A relational algebra for SPARQL. Technical report, Digital Media Systems Laboratory, HP Laboratories Bristol (2005)Google Scholar
  7. 7.
    Elliott, B., Cheng, E., Thomas-Ogbuji, C., Ozsoyoglu, Z.M.: A complete translation from sparql into efficient sql. In: Int. Database Engineering & Applications Symp., IDEAS 2009, pp. 31–42. ACM (2009)Google Scholar
  8. 8.
    Lu, J., Cao, F., Ma, L., Yu, Y., Pan, Y.: An Effective SPARQL Support over Relational Databases. In: Christophides, V., Collard, M., Gutierrez, C. (eds.) SWDB-ODBIS 2007. LNCS, vol. 5005, pp. 57–76. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of sparql. ACM Trans. Database Syst. 34(3), 16:1–16:45 (2009)CrossRefGoogle Scholar
  10. 10.
    Schmidt, M., Meier, M., Lausen, G.: Foundations of sparql query optimization. In: 13th Int. Conf. on Database Theory, ICDT 2010, pp. 4–33. ACM (2010)Google Scholar
  11. 11.
    Sequeda, J.F., Miranker, D.P.: Ultrawrap: SPARQL Execution on Relational Data. Poster at the 10th Int. Semantic Web Conf., ISWC 2011 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jörg Unbehauen
    • 1
  • Claus Stadler
    • 1
  • Sören Auer
    • 1
  1. 1.Universität LeipzigLeipzigGermany

Personalised recommendations