Improving the Performance of the DL-Learner SPARQL Component for Semantic Web Applications

  • Didier Cherix
  • Sebastian Hellmann
  • Jens Lehmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7774)

Abstract

The vision of the Semantic Web is to make use of semantic representations on the largest possible scale - the Web. Large knowledge bases such as DBpedia, OpenCyc, GovTrack are emerging and freely available as Linked Data and SPARQL endpoints. Exploring and analysing such knowledge bases is a significant hurdle for Semantic Web research and practice. As one possible direction for tackling this problem, we present an approach for obtaining complex class expressions from objects in knowledge bases by using Machine Learning techniques. We describe in detail how they leverage existing techniques to achieve scalability on large knowledge bases available as SPARQL endpoints or Linked Data. The algorithms are made available in the open source DL-Learner project and we present several real-life scenarios in which they can be used by Semantic Web applications. Because of the wide usage of the method in several well-known tools, we optimized and benchmarked the existing algorithms and show that we achieve an approximately 3-fold increase in speed, in addition to a more robust implementation.

References

  1. 1.
    Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class descriptions on very large knowledge bases. IJSWIS 5(2), 25–48 (2009)Google Scholar
  2. 2.
    Lehmann, J.: DL-Learner: learning concepts in description logics. The Journal of Machine Learning Research 10, 2639–2642 (2009)MATHGoogle Scholar
  3. 3.
    Hellmann, S., Unbehauen, J., Lehmann, J.: Hanne - a holistic application for navigational knowledge engineering. In: Posters and Demos of ISWC (2010)Google Scholar
  4. 4.
    Hellmann, S., Unbehauen, J., Chiarcos, C., Ngonga Ngomo, A.C.: The tiger corpus navigator. In: Proceedings of the Ninth International Workshop on Treebanks and Linguistic Theories, TLT9. NEALT Proceeding Series (2010)Google Scholar
  5. 5.
    Lehmann, J., Bühmann, L.: ORE - a tool for repairing and enriching knowledge bases. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 177–193. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Lehmann, J., Bühmann, L.: AutoSPARQL: Let users query your knowledge base. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 63–79. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Machine Learning Journal 78(1-2), 203–250 (2010)CrossRefGoogle Scholar
  8. 8.
    Bechhofer, S., Volz, R.: Patching syntax in OWL ontologies. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 668–682. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Didier Cherix
    • 1
  • Sebastian Hellmann
    • 1
  • Jens Lehmann
    • 1
  1. 1.IFI/BIS/AKSWUniversität LeipzigLeipzigGermany

Personalised recommendations