Studying the Effect of Creative Joint Action on Musicians’ Behavior

  • Donald Glowinski
  • Maurizio Mancini
  • Antonio Camurri
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 116)

Abstract

How does the individual behavior of a musician change in solo Vs. creative joint action? In this paper we consider music performance, an ideal ecological test bed to investigate non-verbal social behavior, to compare the expressive movement of violinists when playing solo or in a string quartet ensemble. In the presented study, by measuring its Sample Entropy, we observe that the movement of a musician’s head in creative joint action is more regular with respect to the solo condition.

Keywords

music ensemble entropy expressive behavior creative joint action 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knoblich, G., Butterfill, S., Sebanz, N.: Psychological research on joint action: theory and data. The psychology of learning and theory: Advances in research and theory, vol. 54. Elsevier, San Diego (2011)Google Scholar
  2. 2.
    King, E.C.: The roles of student musicians in quartet rehearsals. Psychology of Music 34(2), 262–282 (2006)CrossRefGoogle Scholar
  3. 3.
    Glowinski, D., Mancini, M., Rukavishnikova, N., Khomenko, V., Camurri, A.: Analysis of dominance in small music ensemble. In: Proceedings of the AFFINE Satellite Workshop of the ACM ICMI 2011 Conference, Alicante, Spain (November 2011)Google Scholar
  4. 4.
    Camurri, A., Coletta, P., Varni, G., Ghisio, S.: Developing multimodal interactive systems with EyesWeb XMI. In: Proceedings of the 7th International Conference on New Interfaces for Musical Expression, pp. 305–308. ACM Press, New York (2007)Google Scholar
  5. 5.
    Glowinski, D., Dael, N., Camurri, A., Volpe, G., Mortillaro, M., Scherer, K.: Towards a Minimal Representation of Affective Gestures. IEEE Transactions on Affective Computing 2(2), 106–118 (2011)CrossRefGoogle Scholar
  6. 6.
    Castellano, G., Villalba, S.D., Camurri, A.: Recognising Human Emotions from Body Movement and Gesture Dynamics. In: Paiva, A.C.R., Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738, pp. 71–82. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Caprara, G.V., Barbaranelli, C., Borgogni, L., Perugini, M.: The“ big five questionnaire”: A new questionnaire to assess the five factor model. Personality and Individual Differences (1993)Google Scholar
  8. 8.
    Watson, D., Clark, L.A., Tellegen, A.: Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063–1070 (1988); Systems and turbulence, pp. 366–381. Warwick (1980) Google Scholar
  9. 9.
    Vesper, van der Wel, R., Knoblich, G., Sebanz, N.: Making oneself predictable: Reduced temporal variability facilitates joint action coordination. Experimental Brain Research 211, 517–530 (2011)CrossRefGoogle Scholar
  10. 10.
    Varni, G., Mancini, M., Volpe, G., Camurri, A.: Sync’n’Move: social interaction based on music and gesture. In: Daras, P., Ibarra, O.M. (eds.) UCMedia 2009. LNICST, vol. 40, pp. 31–38. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Glowinski, D., Coletta, P., Volpe, G., Camurri, A., Chiorri, C., Schenone, A.: Multi-scale entropy analysis of dominance in social creative activities. In: Proc. of the Intl ACM Conf. on Multimedia, pp. 1035–1038. ACM (2010)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2013

Authors and Affiliations

  • Donald Glowinski
    • 1
  • Maurizio Mancini
    • 1
  • Antonio Camurri
    • 1
  1. 1.InfoMus DIBRISUniversity of GenoaItaly

Personalised recommendations