Blind Digital Modulation Detector for MIMO Systems over High-Speed Railway Channels

  • Sofiane Kharbech
  • Iyad Dayoub
  • Eric Simon
  • Marie Zwingelstein-Colin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7865)


Nowadays, several wireless communication networks are widely deployed along railway lines, and future ones are already candidates for Long-Term Evolution (LTE) wireless data communications standard deployment. In fact, an efficient interoperability between these systems is crucial to increase safety, reduce maintenance costs and offer new services to passengers. Cognitive Radios (CRs) have been selected as promised alternative to answer all previous requirements. The main issue in CR is radio environment awareness, which is enhanced by modulation and waveform identification. In this paper we aim to shed light on the problem of blind digital modulation identification for Multiple-Input Multiple-Output (MIMO) technology used in high-speed railway communication systems which are associated to fast-fading channels. The intention is to distinguish among different M-ary Phase-Shift Keying (M-PSK), Amplitude-Shift Keying (M-ASK) and Quadrature Amplitude Modulation (M-QAM) modulation schemes without signal knowledge and Channel State Information (CSI). The detection process employs a Blind Source Separation (BSS) technique to sightlessly perceive the modulation type. The proposed detector proves a high M-PSK modulation identification ratio under a high velocity for LTE standard frequency band and bandwidth.


Modulation identification MIMO systems Higher Order Statistics (HOS) High velocity CR Railway communications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wu, H.-C., Saquib, M., Yun, Z.: Novel automatic modulation classification using cumulant features for communications via multipath channels. IEEE Trans. Wireless Commun. 7(8), 3098–3105 (2008)CrossRefGoogle Scholar
  2. 2.
    Swami, A., Sadler, B.: Hierarchical digital modulation classification using cumulants. IEEE Trans. Commun. 48(3), 416–429 (2000)CrossRefGoogle Scholar
  3. 3.
    Dobre, O.A., Abdi, A., Bar-Ness, Y., Su, W.: Survey of automatic modulation classification techniques: classical approaches and new trends. IET Commun. 1, 137–156 (2007)CrossRefGoogle Scholar
  4. 4.
    Wong, M.L.D., Nandi, A.K.: Automatic digital modulation recognition using artificial neural network and genetic algorithm. Signal Process. 84(2), 351–365 (2004)zbMATHCrossRefGoogle Scholar
  5. 5.
    Hassan, K., Dayoub, I., Hamouda, W., Nzéza, C., Berbineau, M.: Blind Digital Modulation Identification for Spatially Correlated MIMO Systems. IEEE Trans. on Wireless Commun. 91(2), 683–693 (2012)CrossRefGoogle Scholar
  6. 6.
    Clarke, R.H.: A Statistical Theory of Mobile-Radio Reception. Bell System Technical Journal 47(6), 957–1000 (1968)Google Scholar
  7. 7.
    Ikhlef, A., Guennec, D.L.: A simplified constant modulus algorithm for blind recovery of MIMO QAM and PSK signals: a criterion with convergence analysis. EURASIP J. Wireless Commun. and Networking, Article ID 90401 (2007)Google Scholar
  8. 8.
    Papadias, C.: Globally convergent blind source separation based on a multiuser Kurtosis maximization criterion. IEEE Trans. Signal Process. 48(12), 3508–3519 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Krob, M., Benidir, M.: Fonction de contraste pour l’identification aveugle d’un modèle linéaire quadratique. In: Fourteenth Symposium GRETSI-JUAN-LES-PINS (September 1993)Google Scholar
  10. 10.
    Ikhlef, A.: Séparation aveugle de sources dans les systèmes de communication MIMO, Ph.D thesis, University of Rennes I – France (September 2008)Google Scholar
  11. 11.
    McCullagh, P.: Tensor Methods in Statistics. Chapman Hall (1987)Google Scholar
  12. 12.
    Hassan, K., Dayoub, I., Hamouda, W., Berbineau, M.: Automatic modulation recognition using wavelet transform and neural networks in wireless systems. EURASIP J. on Advances in Signal Process., Article ID 532898, 13 pages (June 2010)Google Scholar
  13. 13.
    Beale, M.H., Hagan, M.T., Demuth, H.B.: Neural Network Toolbox User’ s Guide R2012b. MATLAB (2012)Google Scholar
  14. 14.
    Hassan, K.: Contributions to Cognitive Radio Awareness for High Mobility Applications, Ph.D thesis, University of Valenciennes and Hainaut-Cambresis – France (December 2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sofiane Kharbech
    • 1
  • Iyad Dayoub
    • 1
  • Eric Simon
    • 2
  • Marie Zwingelstein-Colin
    • 1
  1. 1.IEMN/DOAEUniversity of Valenciennes and Hainaut-CambresisValenciennes Cedex 9France
  2. 2.IEMN/TELICEUniversity of Lille 1Villeneuve d’Ascq CedexFrance

Personalised recommendations