Advertisement

Bridging Physical and Digital Traffic System Simulations with the Gulliver Test-Bed

  • Christian Berger
  • Erik Dahlgren
  • Johan Grunden
  • Daniel Gunnarsson
  • Nadia Holtryd
  • Anmar Khazal
  • Mohamed Mustafa
  • Marina Papatriantafilou
  • Elad M. Schiller
  • Christoph Steup
  • Viktor Swantesson
  • Philippas Tsigas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7865)

Abstract

We propose a cyber-physical platform that combines road traffic simulation, network simulation, and physically simulated vehicles to facilitate extensive testing on various levels of vehicular systems. Our design integrates physical and digital vehicle simulation into a common development and testing environment. This paper describes the platform design and presents prototypical implementations that use Simulator of Urban Mobility (SUMO), TinyOS Simulator (TOSSIM), a 3D sensor simulation environment, and a test-bed of miniature vehicles called Gulliver. As a prototypical implementation, we demonstrate the development of cooperative applications, and by that we achieve: (a) a cyber-physical system that provides a common environment for physically and digitally simulated vehicles, (b) a platform to interface communication between physically and digitally simulated vehicles, and (c) the ability to tailor testing scenarios in which some system components are simulated digitally and some physically.

The suggested design provides flexibility, cost efficiency, and scalable testing opportunities for future vehicular systems. Furthermore, the proposed system is able to support novel steps towards intelligent transportation systems for smart cities.

Keywords

Wireless Sensor Network Virtual World Smart City Physical Simulation Adaptive Cruise Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adachi, M., Morita, Y., Fujimura, K., Takatori, Y., Hasegawa, T.: On an autonomous cruising traffic flow simulator including inter- vehicle and road-to-vehicle communication networks. In: The IEEE 5th International Conference on Intelligent Transportation Systems, pp. 645–650 (2002)Google Scholar
  2. 2.
    Al Jaafari, M., Al Shamisi, M., Al Darmki, M., Al Kaabi, M., Lakas, A., Boulmalf, M.: Vie: A simulator for road traffic and inter-vehicular communication. In: Int. Conf. Innovations in Information Technology, pp. 548–552 (2008)Google Scholar
  3. 3.
    Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D.: Sumo - simulation of urban mobility: An overview. In: The Third International Conference on Advances in System Simulation, SIMUL 2011, Barcelona, Spain (2011)Google Scholar
  4. 4.
    Berger, C.: Automating Acceptance Tests for Sensor- and Actuator-based Systems on the Example of Autonomous Vehicles. Shaker Verlag, Aachener Informatik-Berichte, Software Engineering Band 6, Aachen, Germany (2010)Google Scholar
  5. 5.
    Bilstrup, K., Uhlemann, E., Ström, E.G., Bilstrup, U.: Evaluation of the ieee 802.11p mac method for vehicle-to-vehicle communication. In: IEEE 68th Vehicular Technology Conference: VTC2008-Fall, pp. 1–5. IEEE (2008)Google Scholar
  6. 6.
    Chen, H., Xiong, P., Schwan, K., Gavrilovska, A., Xu, C.-Z.: A cyber-physical integrated system for application performance and energy management in data centers. In: IGCC, pp. 1–10. IEEE Computer Society (2012)Google Scholar
  7. 7.
    Cho, B.-G., Koo, J.-K., Yoon, B.-J., Kim, B.-W.: The research of dead reckoning stabilization algorithm using different kinds of sensors. In: International Conference on Control, Automation and Systems, pp. 1089–1092 (2010)Google Scholar
  8. 8.
    Hoehmann, L., Kummert, A.: Mobility support for wireless sensor networks simulations for road intersection safety applications. In: Midwest Symposium on Circuits and Systems, pp. 260–263 (2009)Google Scholar
  9. 9.
    Kaiser, J., Schulze, M., Zug, S., Cardeira, C., Carreira, F.: Sentient objects for designing and controlling service robots. Proccedings of IFAC 8, 6–11 (2008)Google Scholar
  10. 10.
    Khalfallah, S., Ducourthial, B.: Bridging the gap between simulation and experimentation in vehicular networks. In: VTC Fall, pp. 1–5 (2010)Google Scholar
  11. 11.
    Krajzewicz, D., Hertkorn, G., Rössel, C., Wagner, P.: Sumo (simulation of urban mobility) - an open-source traffic simulation. In: 4th Middle East Symposium on Simulation and Modelling, pp. 183–187 (2002)Google Scholar
  12. 12.
    Lee, I., Sokolsky, O.: Medical cyber physical systems. In: Proceedings of the 47th Design Automation Conference, DAC 2010, pp. 743–748. ACM, New York (2010)Google Scholar
  13. 13.
    Leone, P., Papatriantafilou, M., Schiller, E.M., Zhu, G.: Chameleon-mac: Adaptive and self-* algorithms for media access control in mobile ad hoc networks. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) Stabilization, Safety, and Security of Distributed Systems (SSS 2010). LNCS, vol. 6366, pp. 468–488. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Leone, P., Schiller, E.M.: Self-stabilizing tdma algorithms for dynamic wireless ad-hoc networks. In: Bar-Noy, A., Halldórsson, M.M. (eds.) ALGOSENSORS 2012. LNCS, vol. 7718, pp. 105–107. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Levis, P., Lee, N., Welsh, M., Culler, D.E.: TOSSIM: accurate and scalable simulation of entire tinyos applications. In: ACM SenSys, pp. 126–137 (2003)Google Scholar
  16. 16.
    Lin, J., Sedigh, S., Miller, A.: Towards integrated simulation of cyber-physical systems: A case study on intelligent water distribution. In: Proceedings of the 8th IEEE Int. Conf. Dependable, Autonomic and Secure Computing, DASC 2009, pp. 690–695. IEEE Computer Society, Washington, DC (2009)CrossRefGoogle Scholar
  17. 17.
    Mustafa, M., Papatriantafilou, M., Schiller, E.M., Tohidi, A., Tsigas, P.: Autonomous TDMA alignment for vanets. In: VTC Fall, pp. 1–5. IEEE (2012)Google Scholar
  18. 18.
    Pahlavan, M., Papatriantafilou, M., Schiller, E.M.: Gulliver: a test-bed for developing, demonstrating and prototyping vehicular systems. In: MOBIWAC, pp. 1–8 (2011)Google Scholar
  19. 19.
    Schulze, M., Zug, S.: A middleware based framework for multi-robot application development. Relation 10(1.115), 9498 (2010)Google Scholar
  20. 20.
    Schulze, M., Zug, S., Campos, F., Carreira, F.: Exploiting the famouso middleware in multi-robot application development with matlab/simulink. In: Middleware (Companion), pp. 74–77 (2008)Google Scholar
  21. 21.
    Schumacher, H., Schack, M., Kürner, T.: Coupling of simulators for the investigation of car-to-x communication aspects. In: APSCC, pp. 58–63 (2009)Google Scholar
  22. 22.
    Crossbow Technology Inc. MicaZ specs (2009), http://bit.ly/roPGqJ
  23. 23.
    Vedder, B.: Gulliver: Design and implementation of a miniature vehicular system. Master’s thesis, CSE, Chalmers Univ. of Tech. (2012)Google Scholar
  24. 24.
    Vinel, A.: 3gpp lte versus ieee 802.11p/wave: Which technology is able to support cooperative vehicular safety applications? IEEE Wireless Communications Letters 1(2), 125–128 (2012)CrossRefGoogle Scholar
  25. 25.
    Wan, J., Suo, H., Yan, H., Liu, J.: A general test platform for cyber-physical systems: Unmanned vehicle with wireless sensor network navigation. Procedia Engineering 24, 123–127 (2011); International Conference on Advances in Engineering (2011)Google Scholar
  26. 26.
    Wegener, A., Piórkowski, M., Raya, M., Hellbrück, H., Fischer, S., Hubaux, J.-P.: Traci: an interface for coupling road traffic and network simulators. In: Proceedings of the 11th Communications and Networking Simulation Symposium, CNS 2008, pp. 155–163. ACM, New York (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christian Berger
    • 1
  • Erik Dahlgren
    • 2
  • Johan Grunden
    • 2
  • Daniel Gunnarsson
    • 2
  • Nadia Holtryd
    • 2
  • Anmar Khazal
    • 2
  • Mohamed Mustafa
    • 2
  • Marina Papatriantafilou
    • 2
  • Elad M. Schiller
    • 2
  • Christoph Steup
    • 3
  • Viktor Swantesson
    • 2
  • Philippas Tsigas
    • 2
  1. 1.Göteborg UniversityGöteborgSweden
  2. 2.Chalmers University of TechnologyGöteborgSweden
  3. 3.University MagdeburgMagdeburgGermany

Personalised recommendations