Abstract

Visual cryptography (VC) is a useful technique that combines the notions of perfect ciphers and secret sharing in cryptography. VC takes a binary image (the secret) and divides it into two or more pieces known as shares. When the shares are printed on transparencies and then superimposed, the secret can be recovered. No computer participation is required. There are various measures on which performance of visual cryptography scheme depends, such as pixel expansion, contrast, security, accuracy, computational complexity, share generated is meaningful or meaningless, type of secret images (either binary or color) and number of secret images(either single or multiple) encrypted by the scheme. In this paper, we will summarize the developments of visual cryptography since its birth in 1994, introduce the main research topics in this area where researchers have been contributing and outline the application of these schemes.

Keywords

Visual cryptography scheme (VCS) pixel expansion contrast security accuracy computational complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  3. 3.
    Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: Contrast optimal threshold visual cryptography schemes. SIAM Journal on Discrete Mathematics 16(2), 224–261 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Lau, D.L., Arce, G.R.: Modern Digital Halftoning. Marcel Dekker, New York (2000)Google Scholar
  5. 5.
    Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Extended schemes for visual cryptography. Theoretical Computer Science 250, 1–16 (1996)MATHGoogle Scholar
  6. 6.
    Ito, R., Kuwakado, H., Tanaka, H.: Image size invariant visual cryptography. EICE Transactions E82-A(10), 2172–2177 (1999)Google Scholar
  7. 7.
    Tzeng, W.G., Hu, C.M.: A new approach for visual cryptography. Designs, Codes and Cryptography 27(3), 207–227 (2002)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Yang, C.N.: New visual secret sharing schemes using probabilistic method. Pattern Recognition Letters 25(4), 481–494 (2004)CrossRefGoogle Scholar
  9. 9.
    Yang, C.N., Chen, T.S.: New size-reduced visual secret sharing schemes with half reduction of shadow size. IEICE Transactions 89-A(2), 620–625 (2006)Google Scholar
  10. 10.
    Yang, C.-N., Chen, T.-S.: Visual secret sharing scheme: Improving the contrast of a recovered image via different pixel expansions. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2006. LNCS, vol. 4141, pp. 468–479. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Yang, C.N., Chen, T.S.: Aspect ratio invariant visual secret sharing schemes with minimum pixel expansion. Pattern Recognition Letters 26(2), 193–206 (2005)CrossRefGoogle Scholar
  12. 12.
    Yang, C.N., Chen, T.S.: Size-adjustable visual secret sharing schemes. IEICE Transactions 88-A(9), 2471–2474 (2005)Google Scholar
  13. 13.
    Tuyls, P., Hollmann, H.D.L., van Lint, J.H., Tolhuizen, L.M.G.M.: XOR-based visual cryptography schemes. Designs, Codes and Cryptography 37(1), 169–186 (2005)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Horng, G., Chen, T., Tsai, D.S.: Cheating in visual cryptography. Des. Codes Cryptography 38(2), 219–236 (2006)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Naor, M., Pinkas, B.: Visual authentication and identification. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 322–336. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  16. 16.
    Yang, C., Laih, C.: Some new types of visual secret sharing schemes, vol. III, pp. 260–268 (December 1999)Google Scholar
  17. 17.
    Hu, C.M., Tzeng, W.G.: Cheating prevention in visual cryptography. IEEE Transactions on Image Processing 16(1), 36–45 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Biehl, I., Wetzel, S.: Traceable visual cryptography. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 61–71. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  19. 19.
    Kang, H.R.: Digital Color Halftoning. In: Society of Photo-Optical Instrumentation Engineers (SPIE), Bellingham, WA, USA (1999)Google Scholar
  20. 20.
    Zhou, Z., Arce, G.R., Crescenzo, G.D.: Halftone visual cryptography. IEEE Transactions on Image Processing 15(8), 2441–2453 (2006)CrossRefGoogle Scholar
  21. 21.
    Myodo, E., Sakazawa, S., Takishima, Y.: Visual cryptography based on void-and cluster halftoning technique. In: ICIP, pp. 97–100 (2006)Google Scholar
  22. 22.
    Myodo, E., Takagi, K., Miyaji, S., Takishima, Y.: Halftone visual cryptography embedding a natural grayscale image based on error diffusion technique. In: ICME, pp. 2114–2117 (2007)Google Scholar
  23. 23.
    Wang, Z., Arce, G.R.: Halftone visual cryptography through error diffusion. In: ICIP, pp. 109–112 (2006)Google Scholar
  24. 24.
    Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Extended capabilities for visual cryptography. Theoretical Computer Science 250(1-2), 143–161 (2001); 102 Weir, J., Yan, W.Google Scholar
  25. 25.
    Nakajima, M., Yamaguchi, Y.: Extended visual cryptography for natural images. In: WSCG, pp. 303–310 (2002)Google Scholar
  26. 26.
    Fu, M.S., Au, O.C.: A novel method to embed watermark in different halftone images: data hiding by conjugate error diffusion (dhced). In: ICME 2003, Washington, DC, USA, pp. 609–612. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  27. 27.
    Ulichney, R.A.: Digital Halftoning. MIT Press, Cambridge (1987)Google Scholar
  28. 28.
    Chen, Y.F., Chan, Y.K., Huang, C.C., Tsai, M.H., Chu, Y.P.: A multiple-level visual secret-sharing scheme without image size expansion. Information Sciences 177(21), 4696–4710 (2007)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Wang, D., Zhang, L., Ma, N., Li, X.: Two secret sharing schemes based on Boolean operations. Pattern Recognition 40(10), 2776–2785 (2007)CrossRefMATHGoogle Scholar
  30. 30.
    Cimato, S., De Santis, A., Ferrara, A.L., Masucci, B.: Ideal contrast visual cryptography schemes with reversing. Information Processing Letters 93(4), 199–206 (2005)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Viet, D.Q., Kurosawa, K.: Almost ideal contrast visual cryptography with reversing. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 353–365. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  32. 32.
    Yang, C.-N., Wang, C.-C., Chen, T.-S.: Real perfect contrast visual secret sharing schemes with reversing. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 433–447. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. 33.
    Naor, M., Shamir, A.: Visual cryptography ii: Improving the contrast via the cover base. In: Crispo, B. (ed.) Security Protocols 1996. LNCS, vol. 1189, pp. 197–202. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  34. 34.
    Yang, C.N., Laih, C.S.: New colored visual secret sharing schemes. Designs, Codes and Cryptography 20(3), 325–336 (2000)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Fang, W.P.: Friendly progressive visual secret sharing. Pattern Recognition 41(4), 1410–1414 (2008)CrossRefMATHGoogle Scholar
  36. 36.
    Wu, C., Chen, L.: A study on visual cryptography. Master’s Thesis, Institute of Computer and Information Science, National Chiao Tung University, Taiwan, R.O.C (1998)Google Scholar
  37. 37.
    Katoh, T., Imai, H.: An extended construction method for visual secret sharing schemes. IEICE Transactions J79-A(8), 1344–1351 (1996)Google Scholar
  38. 38.
    Yang, C.N., Chen, T.S.: Extended visual secret sharing schemes: Improving the shadow image quality. IJPRAI 21(5), 879–898 (2007)Google Scholar
  39. 39.
    Wu, H.C., Chang, C.C.: Sharing visual multi-secrets using circle shares. Computer Standards & Interfaces 28, 123–135 (2005)CrossRefGoogle Scholar
  40. 40.
    Hsu, H.C., Chen, T.S., Lin, Y.H.: The ringed shadow image technology of visual cryptography by applying diverse rotating angles to hide the secret sharing. Networking, Sensing and Control 2, 996–1001 (2004)Google Scholar
  41. 41.
    Shyu, S.J., Huang, S.Y., Lee, Y.K., Wang, R.Z., Chen, K.: Sharing multiple secrets in visual cryptography. Pattern Recognition 40(12), 3633–3651 (2007)CrossRefMATHGoogle Scholar
  42. 42.
    Memon, N., Wong, P.W.: Protecting digital media content. Communications of the ACM 41(7), 35–43 (1998)CrossRefGoogle Scholar
  43. 43.
    Luo, H., Pan, J.S., Lu, Z.M.: Hiding multiple watermarks in transparencies of visual cryptography. Intelligent Information Hiding and Multimedia Signal Processing 1, 303–306 (2007)CrossRefGoogle Scholar
  44. 44.
    Hwang, R.J.: A digital image copyright protection scheme based on visual cryptography. Tamkang Journal of Science and Engineering 3(2), 97–106 (2000)Google Scholar
  45. 45.
    Hassan, M.A., Khalili, M.A.: Self watermarking based on visual cryptography. Proceedings of World Academy of Science, Engineering and Technology 8, 159–162 (2005)Google Scholar
  46. 46.
    Sleit, A., Abusitta, A.: A visual cryptography based watermark technology for individual and group images. Systemics, Cybernetics and Informatics 5(2), 24–32Google Scholar
  47. 47.
    Chuang, S.C., Huang, C.H., Wu, J.L.: Unseen visible watermarking. In: ICIP(3), pp. 261–264. IEEE, Los Alamitos (2007)Google Scholar
  48. 48.
    Hou, Y.C., Chen, P.M.: An asymmetric watermarking scheme based on visual cryptography. In: WCCC-ICSP 5th International Conference on Signal Processing Proceedings, vol. 2, pp. 992–995 (2000)Google Scholar
  49. 49.
    Praun, E., Hoppe, H., Webb, M., Finkelstein, A.: Real-time hatching. In: ACM SIGGRAPH 2001, pp. 579–584. ACM, New York (2001)Google Scholar
  50. 50.
    Yan, W.Q., Jin, D., Kankanhalli, M.S.: Visual cryptography for print and scan applications. In: Proceedings of International Symposium on Circuits and Systems, Vancouver, Canada, pp. 572–575 (May 2004)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2013

Authors and Affiliations

  • Dhiraj Pandey
    • 1
  • Anil Kumar
    • 2
  • Yudhvir Singh
    • 3
  1. 1.JSS NoidaIndia
  2. 2.CSE Deptt.Manipal UniversityJaipurIndia
  3. 3.University Instt.of Engg.&TechnologyMDU RohtakIndia

Personalised recommendations