Advertisement

User-Centric Mobility Management Architecture for Vehicular Networks

  • Rodolfo I. Meneguette
  • Luiz F. Bittencourt
  • Edmundo R. M. Madeira
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 58)

Abstract

Vehicular Ad Hoc Network (VANET) is a subclass of Mobile Ad Hoc Networks that provides wireless communication among vehicles as well as between vehicles and roadside devices. Providing safety and user comfort for drivers and passengers is a promising goal of these networks. Some user applications need a connection to internet through gateways which are in the road side. This connection could generate an overhead of control messages and also the handover time among gateways can affect the performance of these applications. This paper proposes an architecture for intra- and inter-system management for virtual environments in vehicular networks, supporting user-driven applications. More specifically, we consider applications that depend on virtual environments which must be constantly updated, such as online gaming. To efficiently support these applications, the proposed architecture includes an extension of the 802.21 protocol to cope with the virtual environment updates. NS3 simulations were performed to evaluate the proposal over the proxy MIPv6 considering VANET and LTE networks as base stations. We observed that the proposed mechanism that extends the 802.21 protocol had a shorter handover time and lower packet loss when acting with the presented architecture.

Keywords

mobility communication 802.21 vehicular network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., Weil, T.: Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Communications Surveys Tutorials 13(4), 584–616 (2011)CrossRefGoogle Scholar
  2. 2.
    Asgari, M., Jumari, K., Ismail, M.: Analysis of routing protocols in vehicular ad hoc network applications. In: Zain, J.M., Wan Mohd, W.M.B., El-Qawasmeh, E. (eds.) ICSECS 2011, Part III. CCIS, vol. 181, pp. 384–397. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Gerla, M., Maggiorini, D., Palazzi, C., Bujari, A.: A survey on interactive games over mobile networks. Wireless Communications and Mobile Computing (2012)Google Scholar
  4. 4.
    Zhou, S., Cai, W., Lee, B.S., Turner, S.J.: Time-space consistency in large-scale distributed virtual environments. ACM Trans. Model. Comput. Simul. 14, 31–47 (2004)CrossRefGoogle Scholar
  5. 5.
    Faezipour, M., Nourani, M., Saeed, A., Addepalli, S.: Progress and challenges in intelligent vehicle area networks. Communications of the ACM 55(2), 90–100 (2012)CrossRefGoogle Scholar
  6. 6.
    Lee, U., Gerla, M.: A survey of urban vehicular sensing platforms. Computer Networks 54(4), 527–544 (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Kakarla, J., Sathya, S.S.: Article: A survey and qualitative analysis of multi-channel mac protocols for vanet. International Journal of Computer Applications 38(6), 38–42 (2012)CrossRefGoogle Scholar
  8. 8.
    Feng, W.C., Chang, F., Feng, W.C., Walpole, J.: A traffic characterization of popular on-line games. IEEE/ACM Trans. Netw. 13(3), 488–500 (2005)CrossRefGoogle Scholar
  9. 9.
    Tonguz, O.K., Boban, M.: Multiplayer games over vehicular ad hoc networks: A new application. Ad Hoc Netw. 8(5), 531–543 (2010)CrossRefGoogle Scholar
  10. 10.
    Gupta, P., Kumar, P.: The capacity of wireless networks. IEEE Transactions on Information Theory 46(2), 388–404 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Tayal, S., Tripathy, M.: Vanet-challenges in selection of vehicular mobility model. In: 2012 Second International Conference on Advanced Computing Communication Technologies (ACCT), pp. 231–235 (January 2012)Google Scholar
  12. 12.
    Prakash, A., Tripathi, S., Verma, R., Tyagi, N., Tripathi, R., Naik, K.: A cross layer seamless handover scheme in ieee 802.11p based vehicular networks. In: Ranka, S., Banerjee, A., Biswas, K.K., Dua, S., Mishra, P., Moona, R., Poon, S.-H., Wang, C.-L. (eds.) IC3 2010. CCIS, vol. 95, pp. 84–95. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Akyildiz, L., McNair, J., Ho, J., Uzunalioglu, H., Wang, W.: Mobility management in current and future communications networks. IEEE Network 12(4), 39–49 (1998)CrossRefGoogle Scholar
  14. 14.
    Chen, Y.C., Hsia, J.H., Liao, Y.J.: Advanced seamless vertical handoff architecture for wimax and wifi heterogeneous networks with qos guarantees. Computer Communications 32(2), 281–293 (2009)CrossRefGoogle Scholar
  15. 15.
    Yusof, A., Ismail, M., Misran, N.: Handoff architecture in next-generation wireless systems. In: Asia-Pacific Conference on Applied Electromagnetics, APACE 2007, pp. 1–5 (December 2007)Google Scholar
  16. 16.
    Dutta, A., Das, S., Famolari, D., Ohba, Y., Taniuchi, K., Fajardo, V., Lopez, R.M., Kodama, T., Schulzrinne, H.: Seamless proactive handover across heterogeneous access networks. Wirel. Pers. Commun. 43, 837–855 (2007)CrossRefGoogle Scholar
  17. 17.
    Taniuchi, K., Ohba, Y., Fajardo, V., Das, S., Tauil, M., Cheng, Y.H., Dutta, A., Baker, D., Yajnik, M., Famolari, D.: Ieee 802.21: Media independent handover: Features, applicability, and realization. IEEE Communications Magazine 47(1), 112–120 (2009)CrossRefGoogle Scholar
  18. 18.
    Yang, K., Ou, S., Chen, H.H., He, J.: A multihop peer-communication protocol with fairness guarantee for ieee 802.16-based vehicular networks. IEEE Transactions on Vehicular Technology 56(6), 3358–3370 (2007)CrossRefGoogle Scholar
  19. 19.
    Mussabbir, Q., Yao, W., Niu, Z., Fu, X.: Optimized fmipv6 using ieee 802.21 mih services in vehicular networks. IEEE Transactions on Vehicular Technology 56(6), 3397–3407 (2007)CrossRefGoogle Scholar
  20. 20.
    Chiu, K.L., Hwang, R.H., Chen, Y.S.: Cross-layer design vehicle-aided handover scheme in VANETs. Wireless Communications and Mobile Computing (2009)Google Scholar
  21. 21.
    Lee, J.H., Ernst, T., Deng, D.J., Chao, H.C.: Improved pmipv6 handover procedure for consumer multicast traffic. IET Communications 5(15), 2149–2156 (2011)CrossRefGoogle Scholar
  22. 22.
    Kim, J., Morioka, Y., Hagiwara, J.: An optimized seamless ip flow mobility management architecture for traffic offloading. In: 2012 IEEE Network Operations and Management Symposium (NOMS), pp. 229–236 (April 2012)Google Scholar
  23. 23.
    Lee, H.B., Han, Y.H., Min, S.G.: Network mobility support scheme on pmipv6 networks. International Journal of Computer Networks and Communications 2(5), 206–213 (2010)CrossRefGoogle Scholar
  24. 24.
    Choi, H.Y., Min, S.G., Han, Y.H., Park, J., Kim, H.: Implementation and evaluation of proxy mobile ipv6 in ns-3 network simulator. In: 5th Intl. Conference on Ubiquitous Information Technologies and Applications, pp. 1–6 (December 2010)Google Scholar
  25. 25.
    Salumu, M.: ns3 - 802.21, http://code.nsnam.org/salumu/ns-3-mih/ (accessed in 2012)
  26. 26.
    Meneguette, R.I.: Overlay network to support collaborative virtual environments in vehicular networks. Master’s thesis, Universidade Federal de São Carlos (2009) (in portuguese)Google Scholar
  27. 27.
    Kirk, P.: Gnutella protocol development, http://rfc-gnutella.sourceforge.net (accessed in 2012)
  28. 28.
    Tonguz, O.K., Boban, M.: Multiplayer games over vehicular ad hoc networks: A new application. Ad Hoc Networks 8(5), 531–543 (2010)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2013

Authors and Affiliations

  • Rodolfo I. Meneguette
    • 1
  • Luiz F. Bittencourt
    • 1
  • Edmundo R. M. Madeira
    • 1
  1. 1.Institute of Computing (IC)University of Campinas (UNICAMP)São PauloBrazil

Personalised recommendations