Denser Networks for the Future Internet, the CROWD Approach

  • Antonio de la Oliva
  • Arianna Morelli
  • Vincenzo Mancuso
  • Martin Draexler
  • Tim Hentschel
  • Telemaco Melia
  • Pierrick Seite
  • Claudio Cicconetti
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 58)

Abstract

This paper presents the key ideas behind the ICT CROWD (Connectivity management for eneRgy Optimised Wireless Dense networks) project, funded by the European Commission. The project moves from the observation that wireless traffic demand is currently growing exponentially. This growing demand can only be satisfied by increasing the density of points of access and combining different wireless technologies. Mobile network operators have already started to push for denser, heterogeneous deployments; however, current technology needs to steer towards efficiency, to avoid unsustainable energy consumption and network performance implosion due to interference. In this context, CROWD promotes a paradigm shift in the future wireless Internet architecture, towards global network cooperation, dynamic network functionality configuration and fine, on demand, capacity tuning. CROWD pursues four key goals: (i) bringing density-proportional capacity where it is needed, (ii) optimising MAC mechanisms operating in very dense deployments by explicitly accounting for density as a resource rather than as an impediment, (iii) enabling traffic-proportional energy consumption, and (iv) guaranteeing mobile user’s quality of experience by designing smarter connectivity management solutions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    3GPP, Evolved General Packet Radio Service (GPRS) Tunneling Protocol for Control plane (GTPv2-C), TS 29.274 (2011), http://www.3gpp.org/ftp/Specs/html-info/29274.htm
  2. 2.
    Gundavelli, S., Leung, K., Devarapalli, V., Chowdhury, K., Patil, B.: Proxy Mobile IPv6, RFC 5213 (Proposed Standard), Internet Engineering Task Force (2008), http://www.ietf.org/rfc/rfc5213.txt
  3. 3.
    Soliman, H.: Mobile IPv6 Support for Dual Stack Hosts and Routers, RFC 5555 (Proposed Standard), Internet Engineering Task Force (2009), http://www.ietf.org/rfc/rfc5555.txt
  4. 4.
    Chan, H.: Problem statement for distributed and dynamic mobility management, Internet-Draft (work in progress) (2011)Google Scholar
  5. 5.
    3GPP, Architecture enhancements for non-3GPP accesses, 3rd Generation Partnership Project (3GPP), TS 23.402 (2011), http://www.3gpp.org/ftp/Specs/html-info/23402.htm
  6. 6.
    Jones, C., Sivalingam, K., Agrawal, P., Chen, J.: A survey of energy efficient network protocols for wireless networks. Wireless Networks (2001)Google Scholar
  7. 7.
    Restrepo, J.C.C., Gruber, C.G., Machuca, C.M.: Energy profile aware routing. In: IEEE International Conference on Communications Workshops (ICC Workshops 2009), p. 15 (2009)Google Scholar
  8. 8.
    Barford, P., Chabarek, J., Estan, C., Sommers, J., Tsiang, D., Wright, S.: Power Awareness in Network Design and Routing. In: IEEE INFOCOM, Phoenix, USA (2008)Google Scholar
  9. 9.
    Louhi, J.T.: Energy efficiency of modern cellular base stations. In: 29th International Telecommunications Energy Conference 2007, pp. 475–476 (2007)Google Scholar
  10. 10.
    Marsan, M.A., Chiaraviglio, L., Ciullo, D., Meo, M.: Optimal energy savings in cellular access networks. In: IEEE International Conference on Communications Workshops, p. 15 (2009)Google Scholar
  11. 11.
    Chen, B., Jamieson, K., Balakrishnan, H., Morris, R., Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks. Wireless Networks (2002)Google Scholar
  12. 12.
    Fehske, J., Richter, F., Fettweis, G.: Energy efficiency improvements through micro sites in cellular mobile radio networks. In: Proceedings of the IEEE Global Communications Conference (2009)Google Scholar
  13. 13.
    Lobinger, A., Stefanski, S., Jansen, T., Balan, I.: Load Balancing in Downlink LTE Self-Optimizing Networks. In: 2010 IEEE 71st Vehicular Technology Conference (VTC 2010-Spring), May 16-19, pp. 1–5 (2010)Google Scholar
  14. 14.
    Jansen, T., Balan, I., Turk, J., Moerman, I., Krner, T.: Handover Parameter Optimisation in LTE Self- Organizing Networks. In: 2010 IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-Fall), September 6-9, pp. 1–5 (2010)Google Scholar
  15. 15.
    Rahman, M., Yanikomeroglu, H.: Interference avoidance through dynamic downlink OFDMA subchannel allocation using intercell coordination. In: Proc. IEEE VTC Spring 2008, pp. 1630–1635 (May 2008)Google Scholar
  16. 16.
    Rahman, M., Yanikomeroglu, H.: Enhancing cell-edge performance: a downlink dynamic interference avoidance scheme with inter-cell coordination. IEEE Transactions on Wireless Communications 9(4), 1414–1425 (2010)CrossRefGoogle Scholar
  17. 17.
    Venturino, L., Prasad, N., Wang, X.: Coordinated Scheduling and Power Allocation in Downlink Multicell OFDMA Networks. IEEE Transactions on Vehicular Technology 58(6), 2835–2848 (2009)CrossRefGoogle Scholar
  18. 18.
    Hong, Y.-J., Namyoon, L., Clerck, B.: System level performance evaluation of inter-cell interference coordination schemes for heterogeneous networks in LTE-A system. In: 2010 IEEE GLOBECOM Workshops (GC Wkshps), December 6-10, pp. 690–694 (2010)Google Scholar
  19. 19.
    Rahman, M., Yanikomeroglu, H., Wong, W.: Interference Avoidance with Dynamic Inter-Cell Coordination for Downlink LTE System. In: Wireless Communications and Networking Conference (2009)Google Scholar
  20. 20.
    Wang, J., Liu, J., Wang, D., Pang, J., Shen, G.: Optimised Fairness Cell Selection for 3GPP LTE-A Macro-Pico HetNets. In: 2011 IEEE Vehicular Technology Conference (VTC Fall), September 5-8, pp. 1–5 (2011)Google Scholar
  21. 21.
    Lopez-Perez, D., Guvenc, I., de la Roche, G., Kountouris, M., Quek, T.Q.S., Zhang, J.: Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wireless Communications 18(3), 22–30 (2011)CrossRefGoogle Scholar
  22. 22.
    3GPP, Study on enhancements for Machine-Type Communications, TR 22.888Google Scholar
  23. 23.
    Samardzija, Huang, H.: Determining Backhaul Bandwidth Requirements for Network MIMO. In: EUSIPCO (2009)Google Scholar
  24. 24.
    Dräxler, M., Biermann, T., Karl, H., Kellerer, W.: Cooperating Base Station Set Selection and Network Reconfiguration in Limited Backhaul Networks. In: IEEE 23nd International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2012, Sydney, Australia, September 09-12 (2012)Google Scholar
  25. 25.
    Luo, H., Shankaranarayanan, N.: A distributed dynamic channel allocation technique for throughput improvement in a dense WLAN environment. In: Acoustics, Speech, and Signal Processing Proceedings, vol. 5, p. V 3458 (2004)Google Scholar
  26. 26.
    Drieberg, M., Zheng, F.-C., Ahmad, R., Olafsson, S.: An asynchronous distributed dynamic channel assignment scheme for dense WLANs. In: IEEE International Conference on Communications, ICC 2008., pp. 2507–2511 (2008)Google Scholar
  27. 27.
    Ihmig, M., Steenkistie, P.: Distributed dynamic channel selection in chaotic wireless networks (2007)Google Scholar
  28. 28.
    Ryoo, S., Bahk, S.: Spatial reuse enhanced MAC for wireless dense networks. In: Ubiquitous and Future Networks, ICUFN 2009, pp. 225–229 (2009)Google Scholar
  29. 29.
    Wi-Fi Alliance Specification, ”Wi-Fi Peer-to-Peer (P2P) Specification v1.1 (2011)Google Scholar
  30. 30.
    Yoon, H., Kim, J.W., Hsieh, R.: iDLS: Inter-BSS direct link setup in IEEE 802.11 WLANs. In: International Symposium on Communications and Information Technologies, ISCIT 2007, October 17-19, pp. 1015–1020 (2007)Google Scholar
  31. 31.
    Manitpornsut, S., Landfeldt, B., Boukerche, A.: Efficient channel assignment algorithms for infrastructure WLANs under dense deployment. In: MSWiM 2009, p. 329337. ACM, New York (2009)Google Scholar
  32. 32.
    Yoon, H., Kim, J.: Collaborative streaming-based media content sharing in WiFi-enabled home networks. IEEE Transactions on Consumer Electronics 56(4), 2193–2200 (2010)CrossRefGoogle Scholar
  33. 33.
    Doufexi, Tameh, E., Nix, A., Armour, S., Molina, A.: Hotspot wireless LANs to enhance the performance of 3G and beyond cellular networks. IEEE Communications Magazine 41(7), 58–65 (2003)CrossRefGoogle Scholar
  34. 34.
    IEEE P802.11aa/D8.00, Draft Standard for Information Technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements -Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications - Amendment 3: MAC Enhancements for Robust Audio Video StreamingGoogle Scholar
  35. 35.
    Trifunovic, S., Distl, B., Schatzmann, D., Legendre, F.: WiFi-Opp: ad-hoc-less opportunistic networking. In: CHANTS, p. 3742. ACM, New York (2011)Google Scholar
  36. 36.
    Zheng, D., Ge, W., Zhang, J.: Distributed opportunistic scheduling for ad hoc networks with random access: An optimal stopping approach. IEEE Transactions on Information Theory 55(1), 205–222 (2009)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Tan, S.-S., Zheng, D., Zhang, J., Zeidler, J.: Distributed opportunistic scheduling for ad-hoc communications under delay constraints. In: Proceedings of IEEE INFOCOM (2010)Google Scholar
  38. 38.
    Garcia-Saavedra, A., Banchs, A., Serrano, P., Widmer, J.: The impact of imperfect scheduling on cross-layer rate control in wireless networks. In: Proceedings of INFOCOM (2012)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2013

Authors and Affiliations

  • Antonio de la Oliva
    • 1
  • Arianna Morelli
    • 2
  • Vincenzo Mancuso
    • 3
  • Martin Draexler
    • 4
  • Tim Hentschel
    • 5
  • Telemaco Melia
    • 6
  • Pierrick Seite
    • 7
  • Claudio Cicconetti
    • 2
  1. 1.University Carlos III of MadridSpain
  2. 2.INTECS Informatica e tecnologia del softwareItaly
  3. 3.Institute IMDEA NetworksSpain
  4. 4.University of PaderbornGermany
  5. 5.Signalion GMBHGermany
  6. 6.Alcatel-Lucent Bell LabsFrance
  7. 7.France TelecomFrance

Personalised recommendations