Advertisement

A Distributed Dynamic Mobility Architecture with Integral Cross-Layered and Context-Aware Interface for Reliable Provision of High Bitrate mHealth Services

  • András Takács
  • László Bokor
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 61)

Abstract

Mobile health (mHealth) has been receiving more and more attention recently as an emerging paradigm that brings together the evolution of advanced mobile and wireless communication technologies with the vision of “connected health” aiming to deliver the right care in the right place at the right time. However, there are several cardinal problems hampering the successful and widespread deployment of mHealth services from the mobile networking perspective. On one hand, issues of continuous wireless connectivity and mobility management must be solved in future heterogeneous mobile Internet architectures with ever growing traffic demands. On the other hand, Quality of Service (QoS) and Quality of Experience (QoE) must be guaranteed in a reliable, robust and diagnostically acceptable way. In this paper we propose a context- and content-aware, jointly optimized, distributed dynamic mobility management architecture to cope with the future traffic explosion and meet the medical QoS/QoE requirements in varying environments.

Keywords

eHealth mHealth reliable and scalable mHealth service provision DMM (Distributed and Dynamic Mobility Management) cross-layer (X-layer) design context-awareness content-awareness mobile IPv6 protocol family 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Istepanian, R., et al.: M-Health: Emerging Mobile Health Systems. Springer (2005)Google Scholar
  2. 2.
    Blumrosen, G., et al.: C-SMART: Efficient seamless cellular phone based patient monitoring system. In: IEEE International Symposium on World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–6. IEEE (2011)Google Scholar
  3. 3.
    Mougiakakou, S.G., et al.: Mobile technology to empower people with Diabetes Mellitus: Design and development of a mobile application. In: 9th International Conference on Information Technology and Applications in Biomedicine, pp. 1–4 (2009)Google Scholar
  4. 4.
    Malan, D., et al.: CodeBlue: An ad hoc sensor network infrastructure for emergency medical care. In: International Workshop on Wearable and Implantable Body Sensor Networks (2004)Google Scholar
  5. 5.
    Fernandes, S., Karmouch, A.: Vertical Mobility Management Architectures in Wireless Networks: A Comprehensive Survey and Future Directions. IEEE Communications Surveys Tutorials 14, 45–63 (2012)CrossRefGoogle Scholar
  6. 6.
    CISCO: Global mobile data traffic forecast update, 20112016 (2012)Google Scholar
  7. 7.
    Wu, G., et al.: M2M: From mobile to embedded internet. IEEE Communications Magazine 49, 36–43 (2011)Google Scholar
  8. 8.
    Fan, Z., Tan, S.: M2M communications for e-health: Standards, enabling technologies, and research challenges. In: 6th International Symposium on Medical Information and Communication Technology, pp. 1–4 (2012)Google Scholar
  9. 9.
    Istepanian, R.S.H., et al.: Guest Editorial Introduction to the Special Section on M-Health: Beyond Seamless Mobility and Global Wireless Health-Care Connectivity. IEEE Transactions on Information Technology in Biomedicine 8, 405–414 (2004)CrossRefGoogle Scholar
  10. 10.
    Adibi, S.: Link Technologies and BlackBerry Mobile Health (mHealth) Solutions: A Review. IEEE Transactions on Information Technology in Biomedicine 16, 586–597 (2012)CrossRefGoogle Scholar
  11. 11.
    Makris, P., et al.: A Survey on Context-Aware Mobile and Wireless Networking: On Networking and Computing Environments’ Integration. IEEE Communications Surveys Tutorials, 1–25 (2012)Google Scholar
  12. 12.
    Subbiah, B., Uzmi, Z.A.: Content aware networking in the Internet: issues and challenges. In: IEEE International Conference on Communications, vol. 4, pp. 1310–1315 (2001)Google Scholar
  13. 13.
    Yin, H., et al.: CASM: a content-aware protocol for secure video multicast. IEEE Transactions on Multimedia 8, 270–277 (2006)CrossRefGoogle Scholar
  14. 14.
    Srivastava, V., Motani, M.: Cross-layer design: a survey and the road ahead. IEEE Communications Magazine 43, 112–119 (2005)CrossRefGoogle Scholar
  15. 15.
    Foukalas, F., et al.: Cross-layer design proposals for wireless mobile networks: a survey and taxonomy. IEEE Communications Surveys Tutorials 10, 70–85 (2008)CrossRefGoogle Scholar
  16. 16.
    Park, J.-T., et al.: Context-Aware Handover with Power Efficiency for u-Healthcare Service in WLAN. In: Proceedings of the 2009 International Conference on New Trends in Information and Service Science, pp. 1279–1283. IEEE Computer Society, Washington, DC (2009)CrossRefGoogle Scholar
  17. 17.
    Gkonis, P.K., et al.: A content-centric, publish-subscribe architecture delivering mobile context-aware health services. In: Future Network Mobile Summit, pp. 1–9 (2011)Google Scholar
  18. 18.
    Zhang, Y., et al.: Wireless telemedicine services over integrated IEEE 802.11/WLAN and IEEE 802.16/WiMAX networks. IEEE Wireless Communications 17, 30–36 (2010)CrossRefGoogle Scholar
  19. 19.
    Istepanian, R.S.H., et al.: Medical QoS provision based on reinforcement learning in ultrasound streaming over 3.5G wireless systems. IEEE Journal on Selected Areas in Communications. 27, 566–574 (2009)CrossRefGoogle Scholar
  20. 20.
    Ghini, V., et al.: M-Hippocrates: Enabling Reliable and Interactive Mobile Health Services. IT Professional 14, 29–35 (2012)CrossRefGoogle Scholar
  21. 21.
    3GPP: Local IP Access and Selected IP Traffic Offload (2007)Google Scholar
  22. 22.
    Faigl, Z., et al.: Evaluation of two integrated signalling schemes for the Ultra Flat Architecture using SIP, IEEE 802.21, and HIP/PMIP protocols. Comput. Netw. 55, 1560–1575 (2011)Google Scholar
  23. 23.
    Chan, H.A., et al.: Distributed and Dynamic Mobility Management in Mobile Internet: Current Approaches and Issues. Journal of Communications 6 (2011)Google Scholar
  24. 24.
    Perkins, C., et al.: Mobility Support in IPv6. IETF RFC 6275 (2011)Google Scholar
  25. 25.
    Wakikawa, R., et al.: Global HA to HA Protocol Specification. IETF Draft draft-wakikawa-mext-global-haha-spec-02 (2011)Google Scholar
  26. 26.
    Fischer, M., et al.: A Distributed IP Mobility Approach for 3G SAE. In: IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1–6 (2008)Google Scholar
  27. 27.
    Soliman, H., et al.: Hierarchical Mobile IPv6 (HMIPv6) Mobility Management. IETF RFC 5380 (2008)Google Scholar
  28. 28.
    Song, M., et al.: A Distributed Dynamic Mobility Management Strategy for Mobile IP Networks. In: Proceedings of the 6th International Conference on ITS Telecommunications, pp. 1045–1048 (2006)Google Scholar
  29. 29.
    Arkko, J., et al.: Enhanced Route Optimization for Mobile IPv6. IETF RFC 4866 (2007)Google Scholar
  30. 30.
    Moskowitz, R., et al.: Host Identity Protocol. IETF RFC 5210 (2008)Google Scholar
  31. 31.
    Giust, F., et al.: Flat access and mobility architecture: An IPv6 distributed client mobility management solution. In: IEEE Conference on Computer Communications Workshops, pp. 361–366 (2011)Google Scholar
  32. 32.
    Bertin, P., et al.: A Distributed Dynamic Mobility Management Scheme Designed for Flat IP Architectures. In: New Technologies, Mobility and Security, NTMS 2008, pp. 1–5 (2008)Google Scholar
  33. 33.
    Patil, B., et al.: Approaches to Distributed mobility management using Mobile IPv6 and its extensions. IETF Dratf draft-patil-mext-dmm-approaches-02 (2011)Google Scholar
  34. 34.
    Devarapalli, V., et al.: Network Mobility (NEMO) Basic Support Protocol. IETF RFC 3963 (2005)Google Scholar
  35. 35.
    Wakikawa, R., et al.: Multiple Care-of Addresses Registration. IETF RFC 5648 (2009)Google Scholar
  36. 36.
    Nordmark, E., et al.: IPv6 Socket API for Source Address Selection. IETF RFC 5014 (2007)Google Scholar
  37. 37.
    Tsirtsis, G., et al.: Flow Bindings in Mobile IPv6 and Network Mobility (NEMO) Basic Support. IETF RFC 6089 (2011)Google Scholar
  38. 38.
    Koodli, R.: Fast Handovers for Mobile IPv6. IETF RFC 4068 (2005)Google Scholar
  39. 39.
    IEEE: IEEE Standard for Local and metropolitan area networks- Part 21: Media Independent Handover (2009)Google Scholar
  40. 40.
    Lee, J., Ahn, S.: I-FHMIPv6: A Novel FMIPv6 and HMIPv6 Integration Mechanism. IETF Draft draft-jaehwoon-mipshop-ifhmipv6-01 (2006)Google Scholar
  41. 41.
    Boutabia, M., Afifi, H.: MIH-based FMIPv6 optimization for fast-moving mobiles. In: Third International Conference on Pervasive Computing and Applications, pp. 616–620 (2008)Google Scholar
  42. 42.
    Narten, T., et al.: Neighbor Discovery for IP version 6 (IPv6). IETF RFC 4861 (2007)Google Scholar
  43. 43.
    Kaufman, C., et al.: Internet Key Exchange Protocol Version 2 (IKEv2). IETF RFC 5996 (2010)Google Scholar
  44. 44.
    Buschmann, F.: Pattern-Oriented Software Architecture: A System of Patterns. Wiley (1996)Google Scholar
  45. 45.
    FP7-ICT CONCERTO project and MIP6D-NG official websites: http://ict-concerto.eu, http://www.mip6d-ng.net

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2013

Authors and Affiliations

  • András Takács
    • 1
  • László Bokor
    • 2
  1. 1.Computer and Automation Research InstituteHungarian Academy of SciencesBudapestHungary
  2. 2.Department of TelecommunicationsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations