Advertisement

Mobile Multi-parametric Sensor System for Diagnosis of Epilepsy and Brain Related Disorders

  • Panagiota Anastasopoulou
  • Christos Antonopoulos
  • Hatem Shgir
  • George Krikis
  • Nikolaos S. Voros
  • Stefan Hey
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 61)

Abstract

Epilepsy is the commonest serious brain disorder, affecting 1-2% of the general population. Epileptic seizures are usually expressed with a wide range of paroxysmal recurring motor, cognitive, autonomic symptoms and EEG changes. Therefore reliable diagnosis requires state of the art monitoring and communication technologies providing real-time, accurate and continuous brain and body multi-parametric data measurements. The purpose of this paper is to present an adequate mobile system comprising all required sensor types for the everyday life monitoring of patients with epilepsy.

Keywords

epilepsy monitoring biosensors security and privacy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ponnusamy, A., Marques, J.L., Reuber, M.: Comparison of heart rate variability parameters during complex partial seizures and psychogenic nonepileptic seizures. Epilepsia (2012)Google Scholar
  2. 2.
    Massé, F., Penders, J., Serteyn, A., van Bussel, M., Arends, J.: Miniaturized Wireless ECG-Monitor for Real-Time Detection of Epileptic Seizures. In: Wireless Health 2010, San Diego, USA (2010)Google Scholar
  3. 3.
    Bianchi, F., Redmond, S.J., Narayanan, M.R., Cerutti, S., Celler, B.G., Lovell, N.H.: Falls Event Detection Using Triaxial Accelerometry and Barometric Pressure Measurement. In: 31st Annual International Conference of the IEEE EMBS Minneapolis, Minnesota, USA (2009)Google Scholar
  4. 4.
    Gotman, J.: Automatic Detection of Seizures and Spikes. Journal of Clinical Neurophysiology 16(2), 130–140 (1999)CrossRefGoogle Scholar
  5. 5.
    Krist, M., Ottenbacher, J.: http://www.unisens.org
  6. 6.
    Nagai, Y., Goldstein, L.H., Fenwick, P.B., Trimble, M.R.: Clinical efficacy of galvanic skin response biofeedback training in reducing seizures in adult epilepsy: a preliminary randomized controlled study. Epilepsy & Behavior 5(2), 216–223 (2004)CrossRefGoogle Scholar
  7. 7.
    Nijsen, T.M., Arends, J.B., Griep, P.A., Cluitmans, P.J.: The potential value of three-dimensional accelerometry for detection of motor seizures in severe epilepsy. Epilepsy & Behavior 7(1), 74–84 (2005)CrossRefGoogle Scholar
  8. 8.
    Poh, M.-Z., Loddenkemper, T., Swenson, N., Goyal, S., Madsen, J., Picard, R.: Continuous Monitoring of Electrodermal Activity During Epileptic Seizures Using a Wearable Sensor. In: 32nd Annual International Conference of the IEEE EMBS Buenos Aires, Argentina (2010)Google Scholar
  9. 9.
    Schaaff, K., Mueller, L., Kirst, M.: http://www.xaffect.org/
  10. 10.
    Hall, J.B.: Brush up on Bluetooth. GSEC Practical Assignment Version 1.4b, SANS Institute (2008)Google Scholar
  11. 11.
    Lee, J., Kapitanova, K., Son, S.H.: The Price of Security in Wireless Sensor Networks Computer Networks. The International Journal of Computer and Telecommunications Networking 54(17) (2010)Google Scholar
  12. 12.
    Bojkovic, Z.S., Bakmaz, B.M., Bakmaz, M.R.: Security Issues in Wireless Sensor Networks. International Journal of Communications 2(1) (2008)Google Scholar
  13. 13.

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2013

Authors and Affiliations

  • Panagiota Anastasopoulou
    • 1
  • Christos Antonopoulos
    • 2
  • Hatem Shgir
    • 1
  • George Krikis
    • 2
    • 3
  • Nikolaos S. Voros
    • 2
  • Stefan Hey
    • 1
  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Department of Communication Systems and NetworksTechnological Educational Institute of MesolonghiNafpaktosGreece
  3. 3.Noesis TechnologiesPlatani RionGreece

Personalised recommendations