Strong Planning in the Logics of Communication and Change

  • Pere Pardo
  • Mehrnoosh Sadrzadeh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7784)


In this contribution we study how to adapt Backward Plan search to the Logics of Communication and Change (LCC). These are dynamic epistemic logics with common knowledge modeling the way in which announcements, sensing and world-changing actions modify the beliefs of agents or the world itself. The proposed LCC planning system greatly expands the social complexity of scenarios involving cognitive agents that can be solved. For example, goals or plans may consist of a certain distribution of beliefs and ignorance among agents. Our results include: soundness and completeness of backward planning (breadth first search), both for deterministic and strong non-deterministic planning.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen, M.B., Bolander, T., Jensen, M.H.: Conditional Epistemic Planning. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 94–106. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Aucher, G.: DEL-sequents for progression. Journal of Applied Non-Classical Logics 21(3-4), 289–321 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common knowledge and private suspicions. In: Proc. of 7th Conf. TARK 1998, pp. 43–56 (1998)Google Scholar
  4. 4.
    Bolander, T., Andersen, M.: Epistemic planning for single- and multi-agent systems. Journal of Applied Non-Classical Logics 21(1), 9–34 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kaufmann (2004)Google Scholar
  6. 6.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Massachusetts (2000)zbMATHGoogle Scholar
  7. 7.
    Hintikka, J.: Knowledge and belief: an introduction to the logic of the two notions. Cornell University Press (1962)Google Scholar
  8. 8.
    Löwe, B., Pacuit, E., Witzel, A.: Planning based on dynamic epistemic logic (2010)Google Scholar
  9. 9.
    Pardo, P., Sadrzadeh, M.: Planning in the Logics of Communication and Change. In: Proc. of AAMAS 2012 (2012)Google Scholar
  10. 10.
    Pardo, P., Sadrzadeh, M.: Backward Planning in the Logics of Communication and Change. In: Proc. of Agreement Technologies AT 2012 (2012)Google Scholar
  11. 11.
    Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley (1984)Google Scholar
  12. 12.
    Rao, A., Georgeff, M.: Modeling rational agents within a BDI-architecture. In: Proc. of Principles of Knowledge Representation and Reasoning (KR), pp. 473–484 (1991)Google Scholar
  13. 13.
    van Benthem, J., van Eijck, J., Kooi, B.: Logics of Communication and Change. Information and Computation 204, 1620–1662 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    van der Hoek, W., Wooldridge, M.: Tractable Multiagent Planning for Epistemic Goals. In: Proc. of AAMAS 2002, pp. 1167–1174 (2002)Google Scholar
  15. 15.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer (2008)Google Scholar
  16. 16.
    van Ditmarsch, H., Kooi, B.: Semantic results for ontic and epistemic change. In: Bonanno, van der Hoek, Wooldridge (eds.) LOFT 7, pp. 87–117 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pere Pardo
    • 1
  • Mehrnoosh Sadrzadeh
    • 2
  1. 1.Institut d’Investigació en Intel·ligència Artificial (IIIA - CSIC)Spain
  2. 2.Dept. of Computer ScienceUniversity of OxfordUK

Personalised recommendations