Advertisement

Other Ethanologenic Microorganisms

  • Eulogio Castro
Chapter

Abstract

The economical production of ethanol from lignocellulosic materials needs the conversion not only of glucose, which is the sugar of preference of the best performing ethanologenic microorganisms, but also of the rest of sugars found in the fermentation broth, derived from pretreatment and enzymatic steps. This chapter summarizes recent work directed to that objective, by using different modification techniques of microorganisms. After considering the main metabolic pathways for pentoses, the second most abundant kind of fermentable sugars, a review of such modifications taking either Escherichia coli or Saccharomyces cerevisiae as a basis is presented. Although E. coli and S. cerevisiae are the most studied microorganisms through a wide range of techniques, other microorganisms are also being subject of study with the same purpose, and are briefly described at the end of this chapter.

Keywords

Ethanol Production Corn Stover Sugarcane Bagasse Ethanol Yield Pentose Phosphate Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alterthum F, Ingram LO (1989) Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli. Appl Environ Microbiol 55:1943–1948PubMedGoogle Scholar
  2. Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675PubMedCrossRefGoogle Scholar
  3. Chandel AK, Chandrasekhar G, Radhika K, Ravinder R, Ravindra P (2011) Bioconversion of pentose sugars into ethanol: a review and future directions. Biotechnol Mol Biol Rev 6:8–20Google Scholar
  4. Chu BCH, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25:425–441PubMedCrossRefGoogle Scholar
  5. Davis L, Jeon YJ, Svenson C, Rogers P, Pearce J, Peiris P (2005) Evaluation of wheat stillage for ethanol production by recombinant Zymomonas mobilis. Biomass Bioenergy 29:49–59CrossRefGoogle Scholar
  6. Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Engineered reversal of the ß-oxidation cycle for the synthesis of fuels and chemicals. Nature 476:355–359Google Scholar
  7. Dien BS, Hespell RB, Ingram LO, Bothast RJ (1997) Conversion of corn milling fibrous co-products into ethanol by recombinant Escherichia coli strains KO11 and SL40. World J Microbiol Biotech 13:619–625CrossRefGoogle Scholar
  8. Durnin G, Clomburg J, Yeates Z, Alvarez PJJ, Zygourakis K, Campbell P, Gonzalez R (2009) Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol Bioeng 103:148–161PubMedCrossRefGoogle Scholar
  9. Edwards MC, Henriksen ED, Yomano LP, Gardner BC, Sharma LN, Ingram LO, Peterson JD (2011) Addition of genes for cellobiase and pectinolytic activity in Escherichia coli for fuel ethanol production from pectin-rich lignocellulosic biomass. Appl Environ Microbiol 77:5184–5191Google Scholar
  10. Fernández-Sandoval MT, Huerta-Beristain G, Trujillo-Martinez B, Bustos P, González V, Bolivar F, Gosset G, Martinez A (2012) Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenic Escherichia coli under non aerated conditions in glucose-mineral medium. Appl Microbiol Biotechnol 96:1291–1300PubMedCrossRefGoogle Scholar
  11. Geddes CC, Mullinnix MT, Nieves IU, Peterson JJ, Hoffman RW, York SW, Yomano LP, Miller EN, Shanmugam KT, Ingram LO (2011) Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM160. Bioresour Technol 102(3):2702–2711PubMedCrossRefGoogle Scholar
  12. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800Google Scholar
  13. Hahn-Hägerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF (2007) Metabolic engineering for pentose utilization. Adv Biochem Eng Biotechnol 108:147–177PubMedGoogle Scholar
  14. Hasunuma T, Kondo A (2012) Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 30:1207–1218PubMedCrossRefGoogle Scholar
  15. Hawkins GM, Doran-Peterson J (2011) A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds. Biotechnol Biofuels 4:49PubMedCrossRefGoogle Scholar
  16. Hayashi T, Furuta Y, Furukawa K (2011) Respiration-deficient mutants of Zymomonas mobilis show improved growth and ethanol fermentation under aerobic and high temperature conditions. J Biosci Bioeng 111:414–419PubMedCrossRefGoogle Scholar
  17. Huffer S, Roche CM, Blanch HW, Clark DS (2012) Escherichia coli for biofuel production: bridging the gap from promise to practice. Trends Biotechnol 30:538–545PubMedCrossRefGoogle Scholar
  18. Ingram LO, Alterthum F, Conway T (1991) Ethanol production by Escherichia coli strains co-expressing Zymomonas pdc and adh genes. USA Patent number 5(000):000Google Scholar
  19. Ingram LO, Conway T (1998) Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli. Appl Environ Microbiol 54:397–404Google Scholar
  20. Ingram LO, Aldrich HC, Borges ACC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou S (1999) Enteric bacterial catalyst for fuel ethanol production. Biotechnol Prog 15:855–866PubMedCrossRefGoogle Scholar
  21. Jarboe LR, Grabar TB, Yomano LP, Shanmugan KT, Ingram LO (2007) Development of ethanologenic bacteria. Adv Biochem Eng Biotechnol 108:237–261PubMedGoogle Scholar
  22. Jeffries TW (2006) Engineering yeasts for xylose metabolism. Cur Opinion Biotechnol 17:320–326 Google Scholar
  23. Jin M, Balan V, Gunawan C, Dale BE (2012) Quantitatively understanding reduced xylose fermentation performance in AFEX™ treated corn stover hydrolysate using Saccharomyces cerevisiae 424A (LNH-ST) and Escherichia coli KO11. Bioresour Technol 111:294–300PubMedCrossRefGoogle Scholar
  24. Lee SM, Jellison T, Alper HS (2012) Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 78:5708–5716PubMedCrossRefGoogle Scholar
  25. Leite AR, Guimaraes WV, Fernandes de Araújo E, Silva DO (2000) Fermentation of sweet whey by recombinant Escherichia coli KO11. Braz J Microbiol 31:212–215CrossRefGoogle Scholar
  26. Li Y, Gao K, Tian S, Zhang S, Yang X (2011) Evaluation of Saccharomyces cerevisiae Y5 for ethanol production from enzymatic hydrolysate of non-detoxified steam-exploded corn stover. Bioresour Technol 102:10548–10552PubMedCrossRefGoogle Scholar
  27. Liu E, Hu Y (2010) Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem Eng J 48:204–210CrossRefGoogle Scholar
  28. Madhavan A, Tamalampudi S, Srivastava A, Fukuda H, Bisaria VS, Kondo A (2009) Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Appl Microbiol Biotechnol 82:1037–1047PubMedCrossRefGoogle Scholar
  29. Martínez A, Grabar TB, Shanmugam KT, Yomano LP, York SW, Ingram LO (2007) Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnol Lett 29:397–404PubMedCrossRefGoogle Scholar
  30. Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37–53PubMedCrossRefGoogle Scholar
  31. Miller EN, Jarboe LR, Yomano LP, York SW, Shanmugam KT, Ingram LO (2009) Silencing of NADPH-dependent oxidoreductases (yqhd and dkga) in furfural-resistant ethanologenic Escherichia coli. Appl Environ Microbiol 75(13):4315–4323PubMedCrossRefGoogle Scholar
  32. Muñoz-Gutiérrez I, Oropeza R, Gosset G, Martinez A (2012) Cell surface display of a ß-glucosidase employing the type V secretion system on ethanologenic Escherichia coli for the fermentation of cellobiose to ethanol. J Ind Microbiol Biotechnol 39:1141–1152PubMedCrossRefGoogle Scholar
  33. Nieves IU, Geddes CC, Mullinnix MT, Hoffman RW, Tong Z, Castro E, Shanmugam KT, Ingram LO (2011) Injection of air into the headspace improves fermentation of phosphoric acid pretreated sugarcane bagasse by Escherichia coli MM170. Bioresour Technol 102:6959–6965PubMedCrossRefGoogle Scholar
  34. Oh BR, Seo JW, Heo SY, Hong WK, Luo LH, Joe M, Park DH, Kim CH (2011) Efficient production of ethanol from crude glycerol by a Klebsiella pneumonia mutant strain. Bioresour Technol 102:3918–3922Google Scholar
  35. Orencio-Trejo M, Utrilla J, Fernández-Sandoval MT, Huerta-Beristain G, Gosset G, Martinez A (2010) Engineering the Escherichia coli fermentative metabolism. Adv Biochem Eng Biotechnol 121:71–107PubMedGoogle Scholar
  36. Olofsson K, Bertilsson M, Lidén G (2008) A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:7PubMedCrossRefGoogle Scholar
  37. Parachin NS, Bergdahl B, van Niel EWJ, Gorwa-Grauslund MF (2011) Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metab Eng 13:508–517PubMedCrossRefGoogle Scholar
  38. Park YC, Jun SY, Seo JH (2012) Construction and characterization of recombinant Bacillus subtilis JY123 able to transport xylose efficiently. J Biotechnol 161:402–406PubMedCrossRefGoogle Scholar
  39. Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328PubMedCrossRefGoogle Scholar
  40. Qureshi N, Dien BS, Nichols NN, Saha BC, Cotta MA (2006) Genetically engineered Escherichia coli for ethanol production from xylose. Substrate and product inhibition and kinetic parameters. Trans IChemE C, 84(C2):114–122Google Scholar
  41. Rodríguez-Moya M, Gonzalez R (2010) Systems biology approaches for the microbial production of biofuels. Biofuels 1:291–310CrossRefGoogle Scholar
  42. Romero S, Merino E, Bolívar F, Gosset G, Martinez A (2007) Metabolic engineering of Bacillus subtilis for ethanol production: Lactate dehydrogenase plays a key role in the fermentative metabolism. Appl Environ Microbiol 73:5190–5198 Google Scholar
  43. Runquist D, Hahn-Hagerdal B, Bettiga M (2010) Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl Environ Microbiol 76:7796–7802PubMedCrossRefGoogle Scholar
  44. Ryu S, Karim MN (2011) A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates. Appl Microbiol Biotechnol 91:529–542PubMedCrossRefGoogle Scholar
  45. Saha BC, Nichols NN, Cotta MA (2011) Ethanol production from wheat straw by recombinant Escherichia coli strain FBR5 at high solid loading. Bioresour Technol 102:10892–10897Google Scholar
  46. Sakamoto T, Hasunuma T, Hori Y, Yamada R, Kondo A (2012) Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J Biotechnol 158:203–210PubMedCrossRefGoogle Scholar
  47. Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Nat Acad Sci USA 105(37):13769–13774PubMedCrossRefGoogle Scholar
  48. Shaw AJ, Covalla SF, Miller BB, Firliet BT, Hogsett DA, Herring CD (2012) Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production. Metabolic Eng 14:528–532CrossRefGoogle Scholar
  49. Vasan PT, Piriya PS, Prabhu PIG, Vennison SJ (2011) Cellulosic ethanol production by Zymomonas mobilis harboring an endoglucanase gene from Enterobacter cloacae. Bioresource Technol 102:2585–2589CrossRefGoogle Scholar
  50. Vinuselvi P, Lee SK (2012) Engineered Escherichia coli capable of co-utilization of cellobiose and xylose. Enzyme Microb Technol 50:1–4PubMedCrossRefGoogle Scholar
  51. Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335:308–313PubMedCrossRefGoogle Scholar
  52. Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJA (2009) Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 75:907–914Google Scholar
  53. Xiao H, Gu Y, Ning Y, Yang Y, Mitchell WJ, Jiang W, Yang S (2011) Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. Appl Environ Microbiol 77:7886–7895PubMedCrossRefGoogle Scholar
  54. Yasuda M, Miura A, Shiragami T, Matsumoto J, Kamei I, Ishii Y, Ohta K (2012) Ethanol production from non-pretreated napiergrass through a simultaneous saccharification and fermentation process followed by a pentose fermentation with Escherichia coli KO11. J Biosci Bioeng 114:188–192PubMedCrossRefGoogle Scholar
  55. Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotechnol 20:132–138PubMedCrossRefGoogle Scholar
  56. Yomano LP, York SW, Shanmugam KT, Ingram LO (2009) Deletion of methlylglyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli. Biotechnol Lett 31:1389–1398PubMedCrossRefGoogle Scholar
  57. You C, Zhang XZ, Sathitsuksanoh N, Lynd LR, Percival Zhang Y-H (2011) Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome microbe complex. Appl Environ Microbiol 78:1437–1444PubMedCrossRefGoogle Scholar
  58. Young E, Lee SM, Halper H (2010) Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol Biofuels 3:24PubMedCrossRefGoogle Scholar
  59. Zhao J, Xia L (2010) Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells. Biochem Eng J 49:28–32CrossRefGoogle Scholar
  60. Zhou H, Cheng J, Wanga BL, Fink GR, Stephanopoulos G (2012) Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14:611–622PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Chemical, Environmental and Materials EngineeringUniversity of JaenJaenSpain

Personalised recommendations