Advertisement

Soda: A Tool Support for the Detection of SOA Antipatterns

  • Mathieu Nayrolles
  • Francis Palma
  • Naouel Moha
  • Yann-Gaël Guéhéneuc
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7759)

Abstract

During their evolution, Service Based Systems (SBSs) need to fit new user requirements and execution contexts. The resulting changes from the evolution of SBSs may degrade their design and Quality of Service (QoS), and thus may cause the appearance of common poor solutions, called Antipatterns. Like other complex systems, antipatterns in SBSs may hinder the future maintenance and evolution. Therefore, the automatic detection of such antipatterns is an important task for assessing the design and QoS of SBSs, to facilitate their maintenance and evolution. However, despite of their importance, no tool support exists for the detection of antipatterns in SBSs. In this paper, we introduce a prototype tool, called Soda, for detecting SOA (Service Oriented Architecture) antipatterns in SBSs.

Keywords

Antipatterns Service Based Systems Detection Specification Quality of Service 

References

  1. 1.
    Dudney, B., Asbury, S., Krozak, J., Wittkopf, K.: J2EE AntiPatterns. John Wiley & Sons Inc. (2003)Google Scholar
  2. 2.
    Fokaefs, M., Tsantalis, N., Chatzigeorgiou, A.: JDeodorant: Identification and Removal of Feature Envy Bad Smells. In: IEEE International Conference on Software Maintenance, ICSM 2007, pp. 519–520 (October 2007)Google Scholar
  3. 3.
    Král, J., Žemlička, M.: Crucial Service-Oriented Antipatterns, vol. 2, pp. 160–171. International Academy, Research and Industry Association, IARIA (2008)Google Scholar
  4. 4.
    Kral, J., Zemlicka, M.: Popular SOA Antipatterns. In: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, Computation World (2009)Google Scholar
  5. 5.
    Marinescu, R.: Detection Strategies: Metrics-based Rules for Detecting Design Flaws. In: Proc. IEEE International Conference on Software Maintenance (2004)Google Scholar
  6. 6.
    Moha, N., Guéhéneuc, Y.G., Duchien, L., Meur, A.F.L.: DECOR: A Method for the Specification and Detection of Code and Design Smells. IEEE Trans. Softw. Eng. 36(1), 20–36 (2010), http://dx.doi.org/10.1109/TSE.2009.50 CrossRefGoogle Scholar
  7. 7.
    Moha, N., Palma, F., Nayrolles, M., Conseil, B.J., Guéhéneuc, Y.-G., Baudry, B., Jézéquel, J.-M.: Specification and Detection of SOA Antipatterns. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 1–16. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Oracle: Data Mining Concepts 11g Release 1 (11.1) Part Number B28129-04, http://docs.oracle.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mathieu Nayrolles
    • 1
    • 2
  • Francis Palma
    • 2
    • 3
  • Naouel Moha
    • 2
  • Yann-Gaël Guéhéneuc
    • 3
  1. 1.École Supérieur d’InformatiqueCESI.eXiaFrance
  2. 2.Département d’InformatiqueUniversité du Québec à MontréalCanada
  3. 3.École Polytechnique de MontréalPtidej Team, DGIGLCanada

Personalised recommendations