Advertisement

A Hybrid Indoor Positioning Approach for Supermarkets

  • Weishan Zhang
  • Yuhao Wang
  • Licheng Chen
  • Yan Liu
  • Yuan Rao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7759)

Abstract

A navigation service that can provide positioning functionalities is benefitial to both customers and supermarkets. Although there are quite a number of indoor positioning algorithms, the accuracy of the existing approaches is not very satisfying. In this paper, we propose a hybrid approach that combines Weighted Centroid Localizatioin Algorithm, Dynamic Position Tracking Model and Location Approximation Algorithm based on Received Signal Strength. The evaluations show that the proposed approach can achieve better accuracy than the existing approaches, with approximately 20% to 40% improvement.

Keywords

Wireless Sensor Network Mobile Node Receive Signal Strength Receive Signal Strength Indicator Reference Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Balogh, G., Ledeczi, A., Maróti, M., Simon, G.: Time of arrival data fusion for source localization. In: Proceedings of the WICON Workshop on Information Fusion and Dissemination in Wireless Sensor Networks (SensorFusion 2005) (2005)Google Scholar
  2. 2.
    Blumenthal, J., Reichenbach, F., Timmermann, D.: Position estimation in ad hoc wireless sensor networks with low complexity. In: Joint 2nd Workshop on Positioning, Navigation and Communication, pp. 41–49 (2005)Google Scholar
  3. 3.
    Blumenthal, J., Timmermann, D., Buschmann, C., Fischer, S., Koberstein, J., Luttenberger, N.: Minimal transmission power as distance estimation for precise localization in sensor networks. In: Proceedings of the 2006 International Conference on Wireless Communications and Mobile Computing, pp. 1331–1336. ACM (2006)Google Scholar
  4. 4.
    Gao, L., Zhu, M., Yang, D.: Simulation and implement of weighted centroid localization algorithm based on zigbee. Chinese Journal of Sensors and Actuators 1 (2010)Google Scholar
  5. 5.
    Jarzabek, S., Bassett, P., Zhang, H., Zhang, W.: Xvcl: Xml-based variant configuration language. In: Proceedings. 25th International Conference on Software Engineering, pp. 810–811. IEEE (2003)Google Scholar
  6. 6.
    Kuo, W.H., Chen, Y.S., Jen, G.T., Lu, T.W.: An intelligent positioning approach: Rssi-based indoor and outdoor localization scheme in zigbee networks. In: 2010 International Conference on Machine Learning and Cybernetics (ICMLC), vol. 6, pp. 2754–2759. IEEE Computer Society Press, Los Alamitos (2010)CrossRefGoogle Scholar
  7. 7.
    Liu, D., Xiong, Y., Ma, J.: Exploit kalman filter to improve fingerprint-based indoor localization. In: 2011 International Conference on Computer Science and Network Technology (ICCSNT), vol. 4, pp. 2290–2293 (December 2011)Google Scholar
  8. 8.
    Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews 37(6), 1067–1080 (2007)CrossRefGoogle Scholar
  9. 9.
    Otsason, V., Varshavsky, A., LaMarca, A., de Lara, E.: Accurate GSM Indoor Localization. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 141–158. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Ros, M., Boom, J., de Hosson, G.: et al. Indoor localisation using a context-aware dynamic position tracking model. International Journal of Navigation and Observation (2012)Google Scholar
  11. 11.
    Schmid, J., Beutler, F., Noack, B., Hanebeck, U.D., Müller-Glaser, K.D.: An Experimental Evaluation of Position Estimation Methods for Person Localization in Wireless Sensor Networks. In: Marrón, P.J., Whitehouse, K. (eds.) EWSN 2011. LNCS, vol. 6567, pp. 147–162. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Schuhmann, S., Herrmann, K., Rothermel, K., Blumenthal, J., Timmermann, D.: Improved Weighted Centroid Localization in Smart Ubiquitous Environments. In: Sandnes, F.E., Zhang, Y., Rong, C., Yang, L.T., Ma, J. (eds.) UIC 2008. LNCS, vol. 5061, pp. 20–34. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Seco, F., Jiménez, A.R., Prieto, C., Roa, J., Koutsou, K.: A survey of mathematical methods for indoor localization. In: IEEE International Symposium on Intelligent Signal Processing, WISP 2009, pp. 9–14 (2009)Google Scholar
  14. 14.
    Swangmuang, N., Krishnamurthy, P.: Location fingerprint analyses toward efficient indoor positioning. In: Sixth Annual IEEE International Conference on Pervasive Computing and Communications, PerCom 2008, pp. 100–109. IEEE (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Weishan Zhang
    • 1
  • Yuhao Wang
    • 1
  • Licheng Chen
    • 1
  • Yan Liu
    • 1
  • Yuan Rao
    • 2
  1. 1.Department of Software EngineeringChina University of PetroleumQingdaoChina
  2. 2.College of Software EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations