Skip to main content

Predicting Binaural Speech Intelligibility in Architectural Acoustics

  • Chapter
The Technology of Binaural Listening

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

Abstract

A binaural model of speech understanding in background noise is presented and applied to the problem of predicting intelligibility in noisy rooms. It is shown that the model can make accurate predictions from binaural room impulse responses that are short compared to the reverberation time of the room. The model indicates (1) that there can be wide variations in intelligibility even within a fairly uniform listening space when multiple noise sources are present, (2) reverberation time is a poor predictor of intelligibility, (3) intelligibility varies as a function of the listener’s’ head orientation. The effects of room occupancy, restaurant table orientation and hearing impairment are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For example, Odeon or Catt Acoustic.

References

  1. M. Lavandier, J. F. Culling (2008) Speech segregation in rooms: monaural, binaural and interacting effects of reverberation on target and interferer. J. Acoust. Soc. Am. 113:2237–2248

    Google Scholar 

  2. T. Houtgast, H. J. M. Steeneken (1985) A review of the MTF concept in room acoustics and its use for estimating speech intelligibility in auditoria. J. Acoust. Soc. Am. 77:1069–1077

    Google Scholar 

  3. J. S. Bradley (1986) Predictors of speech intelligibility in rooms. J. Acoust. Soc. Am. 80:837–845

    Google Scholar 

  4. M. L. Hawley, R. Y. Litovsky, J. F. Culling (2004) The benefit of binaural hearing in a cocktail party: Effect of location and type of masker. J. Acoust. Soc. Am. 115:833–843

    Google Scholar 

  5. A. W. Bronkhorst, R. Plomp (1988) The effect of head-induced interaural time and level differences on speech intelligibility in noise. J. Acoust. Soc. Am. 83:1508–1516

    Google Scholar 

  6. R. Plomp (1976) Binaural and monaural speech intelligibility of connected discourse in reverberation as a function of azimuth of a single competing sound source (speech or noise). Acustica 34:200–211

    Google Scholar 

  7. R. Beutelmann, T. Brand (2006) Prediction of speech intelligibility in spatial noise and reverberation for normal-hearing and hearing-impaired listeners. J. Acoust. Soc. Am. 120:31–342

    Google Scholar 

  8. R. Beutelmann, T. Brand, B. Kollmeier (2010) Revision, extension and evaluation of a binaural speech intelligibility model. J. Acoust. Soc. Am. 127:2479–2497

    Google Scholar 

  9. M. Lavandier, J. F. Culling (2010) Prediction of binaural speech intelligibility against noise in rooms. J. Acoust. Soc. Am. 127:387–399

    Google Scholar 

  10. S. Jelfs, M. Lavandier, J. F. Culling, (2011) Revision and validation of a binaural model for speech intelligibility in noise. Hear. Res. 275:96–104

    Google Scholar 

  11. M. Lavandier, S. Jelfs, J. F. Culling, A. J. Watkins, A. P. Raimond, S. J. Makin (2012) Binaural prediction of speech intelligibility in reverberant rooms with multiple noise sources. J. Acoust. Soc. Am. 131:218–231

    Google Scholar 

  12. A. W. Bronkhorst, R. Plomp (1992) Effect of multiple speechlike maskers on binaural speech recognition in normal and impaired hearing. J. Acoust. Soc. Am. 92:3132–3139

    Google Scholar 

  13. J. Peissig, B. Kollmeier (1997) Directivity of binaural noise reduction in spatial multiple-source arrangements for normal and impaired listeners. J. Acoust. Soc. Am. 101:1660–1670

    Google Scholar 

  14. J. F. Culling, M. L. Hawley, R. Y. Litovsky (2004) The role of head-induced interaural time and level differences in the speech reception threshold for multiple interfering sound sources. J. Acoust. Soc. Am. 116:1057–1065

    Google Scholar 

  15. N. I. Durlach Binaural signal detection: Equalization and cancellation theory. In J. Tobias (Ed) Foundations of Modern Auditory Theory, Vol. 2. Academic, New York, pp. 371–462 (1972)

    Google Scholar 

  16. ANSI (1997) Methods for calculation of the speech intelligibility index. ANSI S3.5-1997, American National Standards Institute, New York

    Google Scholar 

  17. J. F. Culling, S. Jelfs, A. Talbert, J. A. Grange, S. S. Backhouse (2012) The benefit of bilateral versus unilateral cochlear implantation to speech intelligibility in noise. Ear Hear. 33:673–682

    Google Scholar 

  18. J. B. Allen, D. A. Berkley (1979) Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am. 65:943–950

    Google Scholar 

  19. W. G. Gardner, K. D. Martin (1995) HRTF measurements of a KEMAR. J. Acoust. Soc. Am. 97:3907–3908

    Google Scholar 

  20. M. D. Burkhard, R. M. Sachs (1975) Anthropometric manikin for acoustic research. J. Acoust. Soc. Am. 58:214–222

    Google Scholar 

  21. A. MacCleod, Q. Summerfield (1987) Quantifying the contribution of vision to speech perception in noise. Br. J. Audiol. 21:131–142

    Google Scholar 

  22. J. E. Goldring, M. C. Dorris, B. D. Corneil, P. A. Ballantyne, D. P. Munoz (1996) Combined eye-head gaze shifts to visual and auditory targets in humans. Exp. Brain. Res. 111:68–78

    Google Scholar 

  23. J. H. Rindel (2012) Acoustical capacity as a means of noise control in eating establishments. Joint Baltic-Nordic Acoustics Meeting, Odense, Denmark

    Google Scholar 

  24. H. Lane, B. Tranel (1971) The Lombard sign and the role of hearing in speech. J. Sp. Hear. Res. 14:677–709

    Google Scholar 

  25. M. B. Gardner (1971) Factors Affecting Individual and Group Levels in Verbal Communication. J. Audio Eng. Soc. 19:560–569

    Google Scholar 

  26. B. C. J. Moore, B. R. Glasberg (1987) Formulae describing frequency selectivity as a function of frequency and level, and their use in calculating excitation patterns. Hear. Res. 28:209–225

    Google Scholar 

  27. J. H. Rindel, C. L. Christensen, A. C. Gade (2012) Dynamic sound source for simulating the Lombard effect in room acoustic modeling software. Inter Noise 2012, New York

    Google Scholar 

  28. P. C. Loizou, Y. Hu, R. Litovsky, G. Yu, R. Peters, J. Lake, P. Roland (2009) Speech recognition by bilateral cochlear implant users in a cocktail-party setting. J. Acoust. Soc. Am. 125:372–383

    Google Scholar 

  29. J. Rennies, T. Brand, B. Kollmeier (2011) Prediction of the influence of reverberation on binaural speech intelligibility in noise and in quiet. J. Acoust. Soc. Am. 130:2999–3012

    Google Scholar 

  30. J. P. A. Lochner, J. F. Burger (1964) The influence of reflections on auditorium acoustics. J. Sound Vib. 1:426–454

    Google Scholar 

  31. J. P. L. Brokx, S. G. Nooteboom (199 2) Intonation and the perceptual separation of simultaneous voices. J. Phonetics 10:23–36

    Google Scholar 

  32. J. F. Culling, C. J. Darwin (1993) Perceptual separation of concurrent vowels: within and across formant grouping by F0. J. Acoust. Soc. Am. 93:3454–3467

    Google Scholar 

  33. J. F. Culling, Q. Summerfield, D. H. Marshall (1994) Effects of simulated reverberation on binaural cues and fundamental frequency differences for separating concurrent vowels. Speech Comm. 14:71–96

    Google Scholar 

  34. J. F. Culling, K. I. Hodder, C. Y. Toh (2003) Effects of reverberation on perceptual segregation of competing voices. J. Acoust. Soc. Am. 114:2871–2876

    Google Scholar 

  35. A. W. Bronkhorst, R. Plomp (1992) Effect of multiple speechlike maskers on binaural speech recognition in normal and impaired hearing. J. Acoust. Soc. Am. 92:3132–3139

    Google Scholar 

  36. J. M. Festen, R. Plomp (1990) Effects of fluctuating noise and interfering speech on the speech-reception SRT for impaired and normal hearing. J. Acoust. Soc. Am. 88:1725–1736

    Google Scholar 

  37. A. W. Bronkhorst, R. Plomp (1990) A clinical test for the assessment of binaural speech perception in noise. Audiology 29:275–285

    Google Scholar 

  38. J. F. Culling (in press) Energetic and informational masking in a simulated restaurant environment. in Moore, B C J, Carlyon R P, Gockel H, Patterson R D, Winter I M (eds) Basic Aspects of Hearing: Physiology and Perception (Springer, New York)

    Google Scholar 

  39. B. Collin, M. Lavandier (under review) Binaural speech intelligibility in rooms with variations in spatial location of sources and depth of modulation of noise interferers. J. Acoust. Soc. Am.

    Google Scholar 

  40. K. S. Rhebergen, N. J. Versfeld (2005) A Speech Intelligibility Index-based approach to predict the speech reception threshold for sentences in fluctuating noise for normal-hearing listeners. J. Acoust. Soc. Am. 117:2181–2192

    Google Scholar 

Download references

Acknowledgments

Work supported by U.K. Engineering and Physical Sciences Research Council. The authors thank their two external reviewers for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Culling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Culling, J.F., Lavandier, M., Jelfs, S. (2013). Predicting Binaural Speech Intelligibility in Architectural Acoustics. In: Blauert, J. (eds) The Technology of Binaural Listening. Modern Acoustics and Signal Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37762-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37762-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37761-7

  • Online ISBN: 978-3-642-37762-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics