Modeling Sound Localization with Cochlear Implants

Abstract

This chapter describes a model framework for evaluating the precision of as to which interaural time differences, ITD, are represented in the left- and right-ear auditory-nerve responses. This approach is very versatile, as it allows not only for the evaluation of spiking neuronal responses from models of intact inner ears but also of responses of the deaf ears of cochlear implantees. The model framework delivers quantitative data and, therefore, enables comparisons between different cochlear-implant coding strategies. As the model of electric excitation of the auditory nerve also includes effects such as channel crosstalk, neuronal adaptation and mismatch of electrode positions between left and right ears, its predictive power is much higher than an analysis of the electrical impulses delivered to the electrodes. Evaluation of a novel fine-structure-coding strategy as used by a major implant manufacturer, revealed that, in a best case scenario, sophisticated strategies should be able to provide ITD cues with sufficient precision for sound localization. However, whether these cues can actually be exploited by cochlear implant users has yet to be determined by listening tests. Nevertheless, the model framework introduced here is a valuable tool for the development and pre-evaluation of bilateral cochlear implant coding strategies.

References

  1. 1.
    P. J. Basser. Cable equation for a myelinated axon derived from its microstructure. Med. Biol. Eng. Comput., 31 Suppl:S87–S92, 1993.Google Scholar
  2. 2.
    P. Blamey. Are spiral ganglion cell numbers important for speech perception with a cochlear implant? Am. J. Otol., 18:S11–S12, 1997.Google Scholar
  3. 3.
    J. Blauert. Spatial hearing: The psychophysics of human sound localization. 2nd, revised ed. MIT Press, Berlin-Heidelberg-New York NY, 1997.Google Scholar
  4. 4.
    J. Breebaart, S. van de Par, and A. Kohlrausch. Binaural processing model based on contralateral inhibition. I. model structure. J. Acoust. Soc. Am., 110:1074–1088, 2001.Google Scholar
  5. 5.
    J. Breebaart, S. van de Par, and A. Kohlrausch. Binaural processing model based on contralateral inhibition. II. dependence on spectral parameters. J. Acoust. Soc. Am., 110:1089–1104, 2001.Google Scholar
  6. 6.
    J. Breebaart, S. van de Par, and A. Kohlrausch. Binaural processing model based on contralateral inhibition. III. dependence on temporal parameters. J. Acoust. Soc. Am., 110:1105–1117, 2001.Google Scholar
  7. 7.
    J. J. Briaire and J. H. Frijns. Field patterns in a 3d tapered spiral model of the electrically stimulated cochlea. Hear. Res., 148:18–30, 2000.Google Scholar
  8. 8.
    I. C. Bruce, M. W. White, L. S. Irlicht, S. J. O’Leary, and G. M. Clark. The effects of stochastic neural activity in a model predicting intensity perception with cochlear implants: low-rate stimulation. IEEE Trans. Biomed. Engr. 46(12):1393–1404, 1999.Google Scholar
  9. 9.
    I. C. Bruce, M. W. White, L. S. Irlicht, S. J. O’Leary, S. Dynes, E. Javel, G. M. Clark. A stochastic model of the electrically stimulated auditory nerve: single-pulse, response. IEEE Trans. Biomed. Engr. 46:617–629, 1999.Google Scholar
  10. 10.
    J. Certaine. The solution of ordinary differential equations with large time constants. Mathematical methods for digital computers, pages 128–132, 1960.Google Scholar
  11. 11.
    C. Cherry and B. M. Sayers. Experiments upon the total inhibition of stammering by external control, and some clinical results. J. Psychosom. Res., 1:233–246, 1956.Google Scholar
  12. 12.
    G. Clark. Cochlear implants: Fundamentals and applications. New York: Springer, 2003.Google Scholar
  13. 13.
    H. S. Colburn. Theory of binaural interaction based on auditory-nerve data. I. general strategy and preliminary results on interaural discrimination. J. Acoust. Soc. Am., 54:1458–1470, 1973.Google Scholar
  14. 14.
    H. S. Colburn. Theory of binaural interaction based on auditory-nerve data. II. detection of tones in noise. J. Acoust. Soc. Am., 61:525–533, 1977.Google Scholar
  15. 15.
    H. S. Colburn and J. S. Latimer. Theory of binaural interaction based on auditory-nerve data. III. joint dependence on interaural time and amplitude differences in discrimination and detection. J. Acoust. Soc. Am., 64:95–106, 1978.Google Scholar
  16. 16.
    R. Cole, Y. Muthusamy, and M. Fanty. The isolet spoken letter database, 1990.Google Scholar
  17. 17.
    J. Colombo and C. W. Parkins. A model of electrical excitation of the mammalian auditory-nerve neuron. Hear. Res., 31:287–311, 1987.Google Scholar
  18. 18.
    M. Dorman, K. Dankowski, G. McCandless, and L. Smith. Consonant recognition as a function of the number of channels of stimulation by patients who use the symbion cochlear implant. Ear Hear., 10:288–291, 1989.Google Scholar
  19. 19.
    N. I. Durlach. Equalization and cancellation theory of binaural masking-level differences. J. Acoust. Soc. Am., 35:1206–1218, 1963.Google Scholar
  20. 20.
    S. B. C. Dynes. Discharge characteristics of auditory nerve fibers for pulsatile electrical stimuli. PhD thesis, Massachusetts Institute of Technology, 1996.Google Scholar
  21. 21.
    E. Erixon, H. Högstorp, K. Wadin, and H. Rask-Andersen. Variational anatomy of the human cochlea: implications for cochlear implantation. Otol. Neurotol., 30:14–22, 2009.Google Scholar
  22. 22.
    E. Felder and A. Schrott-Fischer. Quantitative evaluation of myelinated nerve fibres and hair cells in cochleae of humans with age-related high-tone hearing loss. Hear. Res., 91:19–32, 1995.Google Scholar
  23. 23.
    S. Fredelake and V. Hohmann. Factors affecting predicted speech intelligibility with cochlear implants in an auditory model for electrical stimulation. Hear. Res., 2012.Google Scholar
  24. 24.
    L. M. Friesen, R. V. Shannon, D. Baskent, and X. Wang. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am., 110:1150–1163, 2001.Google Scholar
  25. 25.
    J. H. Frijns, J. J. Briaire, and J. J. Grote. The importance of human cochlear anatomy for the results of modiolus-hugging multichannel cochlear implants. Otol. Neurotol., 22:340–349, 2001.Google Scholar
  26. 26.
    J. H. Frijns, S. L. de Snoo, and R. Schoonhoven. Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hear. Res., 87:170–186, 1995.Google Scholar
  27. 27.
    J. H. Frijns, S. L. de Snoo, and J. H. ten Kate. Spatial selectivity in a rotationally symmetric model of the electrically stimulated cochlea. Hear. Res., 95:33–48, 1996.Google Scholar
  28. 28.
    Q.-J. Fu. Loudness growth in cochlear implants: effect of stimulation rate and electrode configuration. Hear. Res., 202:55–62, 2005.Google Scholar
  29. 29.
    W. Gerstner and W. M. Kistler. Spiking neuron models. Cambridge University Press, 2002Google Scholar
  30. 30.
    J. H. Goldwyn, S. M. Bierer, and J. A. Bierer. Modeling the electrode-neuron interface of cochlear implants: effects of neural survival, electrode placement, and the partial tripolar configuration. Hear. Res., 268:93–104, 2010.Google Scholar
  31. 31.
    B. Grothe, M. Pecka, and D. McAlpine. Mechanisms of sound localization in mammals. Physiol. Rev., 90:983–1012, 2010.Google Scholar
  32. 32.
    V. Hamacher. Signalverarbeitungsmodelle des elektrisch stimulierten Gehörs - Signal-processing models of the electrically-stimulated auditory system. PhD thesis, IND, RWTH Aachen, 2004.Google Scholar
  33. 33.
    R. Hartmann and R. Klinke. Impulse patterns of auditory nerve fibres to extra- and intracochlear electrical stimulation. Acta Otolaryngol Suppl, 469:128–134, 1990.Google Scholar
  34. 34.
    I. Hochmair, P. Nopp, C. Jolly, M. Schmidt, H. Schösser, C. Garnham, and I. Anderson. MED-EL cochlear implants: state of the art and a glimpse into the future. Trends Amplif, 10:201–219, 2006.Google Scholar
  35. 35.
    I. J. Hochmair-Desoyer, E. S. Hochmair, H. Motz, and F. Rattay. A model for the electrostimulation of the nervus acusticus. Neuroscience, 13:553–562, 1984.Google Scholar
  36. 36.
    A. E. Holmes, F. J. Kemker, and G. E. Merwin. The effects of varying the number of cochlear implant electrodes on speech perception. American Journal of Otology, 8:240–246, 1987.Google Scholar
  37. 37.
    N. S. Imennov and J. T. Rubinstein. Stochastic population model for electrical stimulation of the auditory nerve. IEEE Trans Biomed Eng. 56:2493–2501, 2009.Google Scholar
  38. 38.
    L. A. Jeffress. A place theory of sound localization. J. Comp. Physiol. Psychol., 41:35–39, 1948.Google Scholar
  39. 39.
    S. Kerber and B. U. Seeber. Sound localization in noise by normal-hearing listeners and cochlear implant users. Ear Hear., 33:445–457, 2012.Google Scholar
  40. 40.
    A. M. Khan, O. Handzel, B. J. Burgess, D. Damian, D. K. Eddington, and J. B. Nadol, Jr. Is word recognition correlated with the number of surviving spiral ganglion cells and electrode insertion depth in human subjects with cochlear implants? Laryngoscope, 115:672–677, 2005.Google Scholar
  41. 41.
    N. Y.-S. Kiang. Discharge patterns of single fibers in the cat’s auditory nerve. Special technical report, 166, Massachusetts Institute of Technology, 1965.Google Scholar
  42. 42.
    W. E. Kock. Binaural localization and masking. J. Acoust. Soc. Am., 22:801, 1950.Google Scholar
  43. 43.
    A. Kohlrausch, J. Braasch, D. Kolossa, and J. Blauert. An introduction to binaural processing. In J. Blauert, editor, The technology of binaural listening, chapter 1. Springer, Berlin-Heidelberg-New York NY, 2013.Google Scholar
  44. 44.
    A. Kral, R. Hartmann, D. Mortazavi, and R. Klinke. Spatial resolution of cochlear implants: the electrical field and excitation of auditory afferents. Hear. Res., 121:11–28, 1998.Google Scholar
  45. 45.
    M. C. Liberman and M. E. Oliver. Morphometry of intracellularly labeled neurons of the auditory nerve: correlations with functional properties. J. Comp. Neurol., 223:163–176, 1984.Google Scholar
  46. 46.
    W. Lindemann. Extension of a binaural cross-correlation model by contralateral inhibition. I. simulation of lateralization for stationary signals. J. Acoust. Soc. Am., 80:1608–1622, 1986.Google Scholar
  47. 47.
    W. Lindemann. Extension of a binaural cross-correlation model by contralateral inhibition. II. the law of the first wave front. J. Acoust. Soc. Am., 80:1623–1630, 1986.Google Scholar
  48. 48.
    P. C. Loizou. Signal-processing techniques for cochlear implants. 18(3):34–46, 1999.Google Scholar
  49. 49.
    J. Malmivuo and R. Plonsey. Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, USA, 1995.Google Scholar
  50. 50.
    H. J. McDermott. Music perception with cochlear implants: a review. Trends Amplif, 8:49–82, 2004.Google Scholar
  51. 51.
    D. R. McNeal. Analysis of a model for excitation of myelinated nerve. BME-23:329–337, 1976.Google Scholar
  52. 52.
    H. Mino, J. T. Rubinstein, C. A. Miller, and P. J. Abbas. Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation. 51:13–20, 2004.Google Scholar
  53. 53.
    H. Mino, J. T. Rubinstein, and J. A. White. Comparison of algorithms for the simulation of action potentials with stochastic sodium channels. Ann. Biomed. Eng., 30:578–587, 2002.Google Scholar
  54. 54.
    H. Motz and F. Rattay. A study of the application of the hodgkin-huxley and the frankenhaeuser-huxley model for electrostimulation of the acoustic nerve. Neuroscience, 18:699–712, 1986.Google Scholar
  55. 55.
    H. Motz and F. Rattay. Signal processing strategies for electrostimulated ear prostheses based on simulated nerve response. Perception, 16:777–784, 1987.Google Scholar
  56. 56.
    M. H. Negm and I. C. Bruce. Effects of i(h) and i(klt) on the response of the auditory nerve to electrical stimulation in a stochastic hodgkin-huxley model. Conf Proc IEEE Eng Med Biol Soc, 2008:5539–5542, 2008.Google Scholar
  57. 57.
    D. A. Nelson, G. S. Donaldson, and H. Kreft. Forward-masked spatial tuning curves in cochlear implant users. J. Acoust. Soc. Am., 123:1522–1543, 2008.Google Scholar
  58. 58.
    M. Nicoletti, P. Bade, M. Rudnicki, and W. Hemmert. Coding of sound into neuronal spike trains in cochlear implant users. In 13th Ann. Meetg. German Soc. Audiol., (DGA), 2010Google Scholar
  59. 59.
    M. Nicoletti, M. Isik, and W. Hemmert. Model-based validation framework for coding strategies in cochlear implants. In Conference on Implantable Auditory Prostheses (CIAP), 2011.Google Scholar
  60. 60.
    NIH Publication No. 11–4798. Cochlear implants, March 2011.Google Scholar
  61. 61.
    P. Nopp, P. Schleich, and P. D’Haese. Sound localization in bilateral users of MED-EL combi 40/40+ cochlear implants. Ear Hear., 25:205–214, 2004.Google Scholar
  62. 62.
    S. J. O’Leary, R. C. Black, and G. M. Clark. Current distributions in the cat cochlea: a modelling and electrophysiological study. Hear. Res., 18:273–281, 1985.Google Scholar
  63. 63.
    C. W. Parkins and J. Colombo. Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes. Hear. Res., 31:267–285, 1987.Google Scholar
  64. 64.
    F. Rattay. Analysis of models for external stimulation of axons. 33:974–977, 1986.Google Scholar
  65. 65.
    F. Rattay. The basic mechanism for the electrical stimulation of the nervous system. Neuroscience, 89:335–346, 1999.Google Scholar
  66. 66.
    F. Rattay, R. N. Leao, and H. Felix. A model of the electrically excited human cochlear neuron. II. influence of the three-dimensional cochlear structure on neural excitability. Hear. Res., 153:64–79, 2001.Google Scholar
  67. 67.
    F. Rattay, P. Lutter, and H. Felix. A model of the electrically excited human cochlear neuron. I. contribution of neural substructures to the generation and propagation of spikes. Hear. Res., 153:43–63, 2001.Google Scholar
  68. 68.
    J. S. Rothman and P. B. Manis. The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons. J. Neurophysiol., 89:3097–3113, 2003.Google Scholar
  69. 69.
    J. T. Rubinstein, B. S. Wilson, C. C. Finley, and P. J. Abbas. Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hear. Res., 127:108–118, 1999.Google Scholar
  70. 70.
    B. U. Seeber and H. Fastl. Localization cues with bilateral cochlear implants. J. Acoust. Soc. Am., 123:1030–1042, 2008.Google Scholar
  71. 71.
    R. V. Shannon. Multichannel electrical stimulation of the auditory nerve in man. II. Channel interaction. Hear. Res., 12:1–16, 1983.Google Scholar
  72. 72.
    R. K. Shepherd and E. Javel. Electrical stimulation of the auditory nerve. I. Correlation of physiological responses with cochlear status. Hear. Res., 108:112–144, 1997.Google Scholar
  73. 73.
    R. K. Shepherd and E. Javel. Electrical stimulation of the auditory nerve: II. Effect of stimulus waveshape on single fibre response properties. Hear. Res., 130:171–188, 1999.Google Scholar
  74. 74.
    J. E. Smit, T. Hanekom, A. van Wieringen, J. Wouters, and J. J. Hanekom. Threshold predictions of different pulse shapes using a human auditory nerve fibre model containing persistent sodium and slow potassium currents. Hear. Res., 269:12–22, 2010.Google Scholar
  75. 75.
    H. Spoendlin and A. Schrott. The spiral ganglion and the innervation of the human organ of corti. Acta Otolaryngol. (Stockh.), 105:403–410, 1988.Google Scholar
  76. 76.
    R. Stern, Jr and H. S. Colburn. Theory of binaural interaction based in auditory-nerve data. IV. A model for subjective lateral position. J. Acoust. Soc. Am., 64:127–140, 1978.Google Scholar
  77. 77.
    R. M. Stern and C. Trahiotis. Models of binaural interaction. In B. C. J. Moore, editor, Hearing, Handbook of perception and cognition, chapter 10, pages 347–387. Academic Press, second edition, 1995.Google Scholar
  78. 78.
    B. Stöbich, C. M. Zierhofer, and E. S. Hochmair. Influence of automatic gain control parameter settings on speech understanding of cochlear implant users employing the continuous interleaved sampling strategy. Ear Hear., 20:104–116, 1999.Google Scholar
  79. 79.
    I. Tasaki. New measurements of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fiber. Am. J. Physiol., 181:639–650, 1955.Google Scholar
  80. 80.
    R. van Hoesel, M. Böhm, J. Pesch, A. Vandali, R. D. Battmer, and T. Lenarz. Binaural speech unmasking and localization in noise with bilateral cochlear implants using envelope and fine-timing based strategies. J. Acoust. Soc. Am., 123:2249–2263, 2008.Google Scholar
  81. 81.
    B. N. W. Schwartz and R. Stämpli. Longitudinal resistance of axoplasm in myelinated nerve fibers of the frog. Pflügers Archiv European Journal of Physiology, 379:R41, 1979.Google Scholar
  82. 82.
    H. Wang. Speech coding and information processing in the peripheral human auditory system. PhD thesis, Technische Universität München, 2009.Google Scholar
  83. 83.
    D. Whiten. Electro-anatomical models of the cochlear implant. PhD thesis, Massachusetts Institute of Technology, 2007.Google Scholar
  84. 84.
    B. S. Wilson, C. C. Finley, D. T. Lawson, R. D. Wolford, D. K. Eddington, and W. M. Rabinowitz. Better speech recognition with cochlear implants. Nature, 352:236–238, 1991.Google Scholar
  85. 85.
    J. Woo, C. A. Miller, and P. J. Abbas. The dependence of auditory nerve rate adaptation on electric stimulus parameters, electrode position, and fiber diameter: a computer model study. J. Assoc. Res. Otolaryngol., 11:283–296, 2010.Google Scholar
  86. 86.
    F.-G. Zeng, G. Grant, J. Niparko, J. Galvin, R. Shannon, J. Opie, and P. Segel. Speech dynamic range and its effect on cochlear implant performance. J. Acoust. Soc. Am., 111:377–386, 2002.Google Scholar
  87. 87.
    F.-G. Zeng, S. Rebscher, W. Harrison, X. Sun, and H. Feng. Cochlear implants: System design, integration, and, evaluation. 1:115–142, 2008.Google Scholar
  88. 88.
    C. Zierhofer. Electrical nerve stimulation based on channel-specific sequences. European Patent, Office, WO/2001/013991, 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Bio-Inspired Information Processing, Institute of Medical EngineeringTechnische Universität MünchenGarchingGermany
  2. 2.MED-EL Deutschland GmbHStarnbergGermany

Personalised recommendations