A Method for Mapping Monthly Solar Irradiation Over Complex Areas of Topography: Réunion Island’s Case Study

  • Miloud BessafiEmail author
  • Béatrice Morel
  • Jean-Daniel Lan-Sun-Luk
  • Jean-Pierre Chabriat
  • Patrick Jeanty
Conference paper
Part of the Climate Change Management book series (CCM)


The aim of this study is to build a high-resolution mapping model for Réunion, a mountainous island with highly complex terrain. The dataset used here, which consists of solar irradiation, is not available from the regular weather station network over the island. This network is relatively dense and includes quality-monitoring stations, thus providing enough information to tackle the problem of climate data interpolation over the complex terrain. A model for mapping the monthly means of such variables is presented. It combines Partial Least Squares (PLS) regression with kriging interpolation of residuals. For all the variables, the same set of nine predictors, including altitude, geographical and topographical features, was selected for PLS regression. The regression model gives statistically good estimates of monthly solar irradiation. Accuracy improves significantly using solar radiation mapping built with regression+kriging than for mapping built with regression only.


Solar irradiation Spatial distribution Partial least squares regression Kriging 


  1. Abdi H (2010) Partial least square regression, projection on latent structure regression, PLS-Regression. Comput Stat, Wiley Inter Rev 2:97–106Google Scholar
  2. Alsamamra H, Ruiz-Arias JA, Pozo-Vasquez D, Tovar-Pescador J (2009) A comparative study of ordinary and residual kriging techniques for mapping solar irradiation over Spain. Agric For Meteorol 149:1343–1357CrossRefGoogle Scholar
  3. Brunetti M, Lentini G, Maugeri M, Nanni T, Simolo C, Spinoni J (2009) 1961–1990 high-resolution northern and central Italy monthly precipitation climatologies. Adv Sci Res 3:73–78CrossRefGoogle Scholar
  4. Chen D, Gong L, Xu C, Halldin S (2007) A high-resolution, gridded dataset for monthly temperature normals (1971–2000) in Sweden. Geogr Ann 89(4):249–261CrossRefGoogle Scholar
  5. D’ambra A, Sarnacchiaro P (2010) Some data reduction methods to analyze the dependence with highly collinear variables: a simulation study. Asian J Math Stat 3(2):69–81CrossRefGoogle Scholar
  6. Daly C, Smith JW, Smith JI, McKane RB (2007) High-resolution spatial modeling of daily weather elements for a catchment in the Oregon mountains, United States. J Appl Meteorol Climatol 46:1565–1586CrossRefGoogle Scholar
  7. Douville H (1992) Utilisation d’un modèle numérique de terrain pour le calcul de champs pluviométriques en zone montagneuse. Application de la méthode à l’île de La Réunion.Bureau d’étude climatologique, Direction Interrégionale de La Réunion. Technical report, p 151Google Scholar
  8. Efthymiadis D, Jones PD, Briffa KR, Auer I, Böhm R, Schôner W, Rei C, Schmidli J (2006) Construction of a 10-min-gridded precipitation data set for the greater Alpine region for 1800–2003. J Geophys Res 111(D1). doi: 10.1029/2005JD006120
  9. Goodale CL, Aber JD, Ollinger SV (1998) Mapping monthly precipitation, temperature, and solar irradiation for Ireland with polynomial regression and digital elevation model. Clim Res 10:35–49CrossRefGoogle Scholar
  10. Goyal MK, Ojha CSP (2010) Application of PLS-regression as downscaling tool for Pichola lake basin in India. Int J Geosci 1:54–57Google Scholar
  11. Guan H, Wilson JL, Makhnin O (2005) Geostatistical mapping of mountain precipitation incorporating autosearched effects of terrain and climatic characteristics. J Hydrometeorology 6:1018–1031CrossRefGoogle Scholar
  12. Gyalistras D (2003) Development and validation of a high-resolution monthly gridded temperature and precipitation data set for Switzerland (1951–2000). Clim Res 25:55–83Google Scholar
  13. Hirabayasi Y, Kanae S, Motota K, Masuda K, Döll P (2008) A 59-year (1948–2006) global near-surface meteorological data set for land surface models. Part I: development of daily forcing and assessment of precipitation intensity. Hydrol Res Lett 2:36–40CrossRefGoogle Scholar
  14. Höskuldsson A (1988) PLS regression methods. J Chemometr 2(3): 211–228Google Scholar
  15. Hunter RD, Meentemeyer RK (2005) Climatologically aided mapping of daily precipitation and temperature. J Appl Meteorol 44:1501–1510CrossRefGoogle Scholar
  16. Issaks E, Srivastava R (1989) An introduction to applied geostatistics. Oxford University press, New York, p 561Google Scholar
  17. Kyriakidis PC, Kim J, Miller NL (2001) Geostatistical mapping of precipitation from rain gauge data using atmospheric terrain characteristic. J Appl Meteorol 40:1855–1877CrossRefGoogle Scholar
  18. Matheron G (1971) The theory of regionalized variables and its applications. Technical reports 6, Paris school of mines. Cah. Cent. Morphol. Math., FontainebleauGoogle Scholar
  19. McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606CrossRefGoogle Scholar
  20. McKenney DW, Pedlar JH, Papadopol P, Hutchinson MF (2006) The development of 1901–2000 historical monthly climate models for Canada and the United States. Agric For Meteorol 138:69–81CrossRefGoogle Scholar
  21. Météo-France, Atlas climatique de La Réunion (2000) Bureau d’étude climatologique, Direction Interrégionale de La Réunion. Annual report, No. 1657Google Scholar
  22. Mitchell TD, Jones P (2005) An improved method of constructing database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  23. Pape R, Wundram D, Löffler J (2009) Modelling near-surface temperature conditions in high mountain environments: an appraisal. Clim Res 39:99–109CrossRefGoogle Scholar
  24. Portalés C, Boronat N, Pardo-Pascual JE, Balaguer-Beser A (2009) Seasonal precipitation interpolation at the Valencia region with multivariate methods using geographic and topographic information. Int J Climatol 30(10):1547–1563Google Scholar
  25. Tan B, Suo L, Huang J (2008) Variability of the coupling between surface air temperature and the northern annular mode at various levels. Acta Meteorol Sinica 22:277–283Google Scholar
  26. Taupin FG, Bessafi M, Baldy S, Bremaud PJ (1999) Tropospheric ozone above the southwestern Indian ocean is strongly linked to dynamical conditions prevailing in the tropics. J Geophy Res 104:8057–8066CrossRefGoogle Scholar
  27. Tootle AG, Singh AK, Piechota TC, Farnham I (2007) Long lead-time forecasting of U.S. streamflow using partial least squares regression. J Hydrol Eng 12(5):442–451CrossRefGoogle Scholar
  28. Ward MN, Folland CK (1991) Prediction of seasonal rainfall in the north Nordeste of Brazil using eigenvectors of sea-surface temperature. Int J Climatol 11:711–743CrossRefGoogle Scholar
  29. Wold H (1966) Estimation of principal components and related models by iterative least squares. In: Krishnaiah PR (ed) Multivariate analysis. New York Academic Press, New York, pp 391–420Google Scholar
  30. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of Chemometrics. Chemometr Intell Lab Syst 58:109–130Google Scholar
  31. Yeniay Ö, Göktas A (2002) A comparison of partial least squares regression with other prediction methods. J Math Stat 31:99–111Google Scholar
  32. Zeng X, Brunke MA, Fairall M, Bond NA, Lenschow DH (2004) Marine atmospheric boundary layer height over the eastern Pacific: Data analysis and model evaluation. J Clim 17:4159–4170CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Miloud Bessafi
    • 1
    Email author
  • Béatrice Morel
    • 1
  • Jean-Daniel Lan-Sun-Luk
    • 1
  • Jean-Pierre Chabriat
    • 1
  • Patrick Jeanty
    • 1
  1. 1. Laboratoire d’Energétique, d’Electronique et des ProcédésUniversité de La RéunionSaint-DenisFrance

Personalised recommendations