From Search to Computation: Redundancy Criteria and Simplification at Work

  • Thomas Hillenbrand
  • Ruzica Piskac
  • Uwe Waldmann
  • Christoph Weidenbach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7797)

Abstract

The concept of redundancy and simplification has been an ongoing theme in Harald Ganzinger’s work from his first contributions to equational completion to the various variants of the superposition calculus. When executed by a theorem prover, the inference rules of logic calculi usually generate a tremendously huge search space. The redundancy and simplification concept is indispensable for cutting down this search space to a manageable size. For a number of subclasses of first-order logic appropriate redundancy and simplification concepts even turn the superposition calculus into a decision procedure. Hence, the key to successfully applying first-order theorem proving to a problem domain is to find those simplifications and redundancy criteria that fit this domain and can be effectively implemented.

We present Harald Ganzinger’s work in the light of the simplification and redundancy techniques that have been developed for concrete problem areas. This includes a variant of contextual rewriting to decide a subclass of Euclidean geometry, ordered chaining techniques for Church-Rosser and priority queue proofs, contextual rewriting and history- dependent complexities for the completion of conditional rewrite systems, rewriting with equivalences for theorem proving in set theory, soft typing for the exploration of sort information in the context of equations, and constraint inheritance for automated complexity analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afshordel, B., Hillenbrand, T., Weidenbach, C.: First-Order Atom Definitions Extended. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 309–319. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press, New York (1998)CrossRefMATHGoogle Scholar
  3. 3.
    Bachmair, L.: Canonical Equational Proofs. Birkhäuser, Boston (1991)CrossRefMATHGoogle Scholar
  4. 4.
    Bachmair, L., Dershowitz, N., Hsiang, J.: Orderings for equational proofs. In: [First Annual] Symposium on Logic in Computer Science, June 16–18, pp. 346–357. IEEE Computer Society Press, Cambridge (1986)Google Scholar
  5. 5.
    Bachmair, L., Ganzinger, H.: Completion of First-Order Clauses with Equality by Strict Superposition (extended abstract). In: Okada, M., Kaplan, S. (eds.) CTRS 1990. LNCS, vol. 516, pp. 162–180. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  6. 6.
    Bachmair, L., Ganzinger, H.: On Restrictions of Ordered Paramodulation with Simplification. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 427–441. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  7. 7.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 4(3), 217–247 (1994)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bachmair, L., Ganzinger, H.: Ordered chaining calculi for first-order theories of transitive relations. Journal of the ACM 45(6), 1007–1049 (1998)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, ch. 2, pp. 19–99. Elsevier (2001)Google Scholar
  10. 10.
    Balbiani, P.: Equation Solving in Geometrical Theories. In: Lindenstrauss, N., Dershowitz, N. (eds.) CTRS 1994. LNCS, vol. 968, Springer, Heidelberg (1995)CrossRefGoogle Scholar
  11. 11.
    Balbiani, P.: Mécanisation de la géométrie: incidence et orthogonalité. Revue d’Intelligence Artificielle 11, 179–211 (1997)Google Scholar
  12. 12.
    Basin, D., Ganzinger, H.: Automated complexity analysis based on ordered resolution. Journal of the ACM 48(1), 70–109 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bertling, H., Ganzinger, H., Schäfers, R.: CEC: A System for the Completion of Conditional Equational Specifications. In: Ganzinger, H. (ed.) ESOP 1988. LNCS, vol. 300, pp. 378–379. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  14. 14.
    Brinker, C.: Geometrisches Schließen mit SPASS. Diplomarbeit, Universität des Saarlandes and Max-Planck-Institut für Informatik, Saarbrücken, Germany (2000); Supervisors: Ganzinger, H., Weidenbach, C.Google Scholar
  15. 15.
    de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church–Rosser theorem. Indagationes Mathematicae 34(5), 381–392 (1972)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Church, A.: An unsolvable problem of elementary number theory. American Journal of Mathematics 58, 345–363 (1936)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression problem. Journal of the ACM 27(4), 758–771 (1980)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Fay, M.: First-order unification in an equational theory. In: Fourth Workshop on Automated Deduction, pp. 161–167. Academic Press, Austin (1979)Google Scholar
  19. 19.
    Finkler, U., Mehlhorn, K.: Checking priority queues. In: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1999). Society for Industrial and Applied Mathematics, pp. 901–902 (1999)Google Scholar
  20. 20.
    Ganzinger, H.: A Completion Procedure for Conditional Equations. In: Kaplan, S., Jouannaud, J.-P. (eds.) CTRS 1987. LNCS, vol. 308, pp. 62–83. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  21. 21.
    Ganzinger, H.: Completion with History-Dependent Complexities for Generated Equations. In: Sannella, D., Tarlecki, A. (eds.) Abstract Data Types 1987. LNCS, vol. 332, pp. 73–91. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  22. 22.
    Ganzinger, H.: Ground Term Confluence in Parametric Conditional Equational Specifications. In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing, M. (eds.) STACS 1987. LNCS, vol. 247, pp. 286–298. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  23. 23.
    Ganzinger, H.: A completion procedure for conditional equations. Journal of Symbolic Computation 11, 51–81 (1991)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Ganzinger, H.: Order-sorted completion: the many-sorted way. Theoretical Computer Science 89, 3–32 (1991)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Ganzinger, H., Meyer, C., Weidenbach, C.: Soft Typing for Ordered Resolution. In: McCune, W. (ed.) CADE 1997. LNCS (LNAI), vol. 1249, pp. 321–335. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  26. 26.
    Ganzinger, H., Nieuwenhuis, R., Nivela, P.: The Saturate system (1994), http://www.mpi-sb.mpg.de/SATURATE
  27. 27.
    Ganzinger, H., Schäfers, R.: System support for modular order-sorted horn clause specifications. In: 12th International Conference on Software Engineering, pp. 150–159. IEEE Computer Society Press, Nice (1990)Google Scholar
  28. 28.
    Ganzinger, H., Stuber, J.: Superposition with equivalence reasoning and delayed clause normal form transformation. Information and Computation 199, 3–23 (2005)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Giegerich, R.: Specification and correctness of code generators – an experiment with the CEC-system. In: Müller, J., Ganzinger, H. (eds.) 1st German Workshop “Term Rewriting: Theory and Applications”, SEKI-Report 89/02. Universität Kaiserslautern (1989)Google Scholar
  30. 30.
    Gnaedig, I., Kirchner, C., Kirchner, H.: Equational completion in order-sorted algebras. Theoretical Computer Science 72(2&3), 169–202 (1990)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Hsiang, J., Rusinowitch, M.: Proving refutational completeness of theorem-proving strategies: The transfinite semantic tree method. Journal of the ACM 38(3), 559–587 (1991)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Jacquemard, F., Meyer, C., Weidenbach, C.: Unification in Extensions of Shallow Equational Theories. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 76–90. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  33. 33.
    Kleene, S.: A theory of positive integers in formal logic. American Journal of Mathematics 57, 153–173, 219–244 (1935)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970); Reprinted in Siekmann and Wrightson [50], pp. 342–376 Google Scholar
  35. 35.
    McAllester, D.A.: Automatic recognition of tractability in inference relation. Journal of the ACM 40(2), 284–303 (1993)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Nieuwenhuis, R.: First-order completion techniques. Technical report, UPC-LSI, Cited in Nieuwenhuis and Rubio [38] (1991)Google Scholar
  37. 37.
    Nieuwenhuis, R.: Basic paramodulation and decidable theories (extended abstract). In: Proceedings 11th IEEE Symposium on Logic in Computer Science (LICS 1996), pp. 473–482. IEEE Computer Society Press (1996)Google Scholar
  38. 38.
    Nieuwenhuis, R., Rubio, A.: Basic Superposition is Complete. In: Krieg-Brückner, B. (ed.) ESOP 1992. LNCS, vol. 582, Springer, Heidelberg (1992)Google Scholar
  39. 39.
    Nipkow, T.: More Church–Rosser proofs (in Isabelle/HOL). Journal of Automated Reasoning 26, 51–66 (2001)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)MATHGoogle Scholar
  41. 41.
    Nivela, P., Nieuwenhuis, R.: Saturation of First-Order (constrained) Clauses with the Saturate System. In: Kirchner, C. (ed.) RTA 1993. LNCS, vol. 690, pp. 436–440. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  42. 42.
    de Nivelle, H., Piskac, R.: Verification of an off-line checker for priority queues. In: Aichernig, B.K., Beckert, B. (eds.) Third IEEE International Conference on Software Engineering and Formal Methods (SEFM 2005), pp. 210–219. IEEE, Koblenz (2005)CrossRefGoogle Scholar
  43. 43.
    Ohlbach, H.J.: Translation methods for non-classical logics – an overview. Bulletin of the IGPL 1(1), 69–90 (1993)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Peterson, G.E.: A technique for establishing completeness results in theorem proving with equality. SIAM Journal on Computing 12(1), 82–100 (1983)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Piskac, R.: Formal correctness of result checking for priority queues. Master’s thesis, Universität des Saarlandes (February 2005)Google Scholar
  46. 46.
    Riazanov, A., Voronkov, A.: The design and implementation of vampire. AI Communications 15(2-3), 91–110 (2002)MATHGoogle Scholar
  47. 47.
    Robinson, G., Wos, L.: Paramodulation and theorem-proving in first-order theories with equality. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4, ch. 8, pp. 298–313. Edinburgh University Press, Edinburgh (1969); Reprinted in Siekmann and Wrightson [50], pp. 298–313Google Scholar
  48. 48.
    Rusinowitch, M.: Theorem-proving with resolution and superposition. Journal of Symbolic Computation 11(1&2), 21–49 (January/February 1991)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Schulz, S.: E – A Brainiac Theorem Prover. Journal of AI Communications 15(2/3), 111–126 (2002)MATHGoogle Scholar
  50. 50.
    Siekmann, J., Wrightson, G.: Automation of Reasoning: Classical Papers on Computational Logic 1967-1970, vol. 2. Springer, Berlin (1983)CrossRefMATHGoogle Scholar
  51. 51.
    Takahashi, M.: Parallel reductions in λ-calculus. Information and Computation 118(1), 120–127 (1995)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Wasserman, H., Blum, M.: Software reliability via run-time result-checking. Journal of the ACM 44(6), 826–849 (1997)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Weidenbach, C.: Towards an Automatic Analysis of Security Protocols in First-Order Logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 314–328. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  54. 54.
    Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C., Topic, D.: SPASS Version 2.0. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 275–277. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  55. 55.
    Weidenbach, C., Gaede, B., Rock, G.: SPASS & FLOTTER, version 0.42. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS (LNAI), vol. 1104, pp. 141–145. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  56. 56.
    Zhang, H., Kapur, D.: First-Order Theorem Proving using Conditional Rewrite Rules. In: Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 1–20. Springer, Heidelberg (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thomas Hillenbrand
    • 1
  • Ruzica Piskac
    • 2
  • Uwe Waldmann
    • 1
  • Christoph Weidenbach
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany
  2. 2.Max-Planck-Institut für SoftwaresystemeSaarbrückenGermany

Personalised recommendations