Advertisement

Canonical Ground Horn Theories

  • Maria Paola Bonacina
  • Nachum Dershowitz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7797)

Abstract

An abstract framework of canonical inference based on proof orderings is applied to ground Horn theories with equality. A finite presentation that makes all normal-form proofs available is called saturated. To maximize the chance that a saturated presentation be finite, it should also be contracted, in which case it is deemed canonical. We apply these notions to propositional Horn theories – or equivalently Moore families – presented as implicational systems or associative-commutative rewrite systems, and ground equational Horn theories, presented as decreasing conditional rewrite systems. For implicational systems, we study different notions of optimality and the completion procedures that generate them, and we suggest a new notion of rewrite-optimality, that takes contraction by simplification into account. For conditional rewrite systems, we show that reduced (fully normalized) is stronger than contracted (sans redundancy), and accordingly the perfect system – complete and reduced – is preferred to the canonical one – saturated and contracted. We conclude with a survey of approaches to normal-form proofs, saturated, or canonical, systems, and decision procedures based on them.

Keywords

Horn theories conditional theories Moore families decision procedures canonical systems normal forms saturation redundancy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K.R.: Logic programming. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Formal Methods and Semantics, vol. B, ch. 10, pp. 493–574. North-Holland, Amsterdam (1990)Google Scholar
  2. 2.
    Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures. ACM Transactions on Computational Logic 10(1), 129–179 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures. Information and Computation 183(2), 140–164 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bachmair, L., Dershowitz, N.: Inference rules for rewrite-based first-order theorem proving. In: Proceedings of the Second Annual IEEE Symposium on Logic in Computer Science, pp. 331–337. IEEE Computer Society Press (1987)Google Scholar
  5. 5.
    Bachmair, L., Dershowitz, N.: Equational inference, canonical proofs, and proof orderings. Journal of the Association for Computing Machinery 41(2), 236–276 (1994)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In: Aït-Kaci, H., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures. Rewriting Techniques, vol. II, pp. 1–30. Academic Press (1989)Google Scholar
  7. 7.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 4, 217–247 (1994)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bachmair, L., Tiwari, A., Vigneron, L.: Abstract congruence closure. Journal of Automated Reasoning 31(2), 129–168 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Baumgartner, P. (ed.): Theory Reasoning in Connection Calculi. LNCS (LNAI), vol. 1527. Springer, Heidelberg (1998)MATHGoogle Scholar
  10. 10.
    Bertet, K., Monjardet, B.: The multiple facets of the canonical direct implicational basis. Cahiers de la MSE No. b05052, Maison des Sciences Economiques, Université Paris Panthéon-Sorbonne (June 2005), http://ideas.repec.org/p/mse/wpsorb/b05052.html
  11. 11.
    Bertet, K., Nebut, M.: Efficient algorithms on the Moore family associated to an implicational system. Discrete Mathematics and Theoretical Computer Science 6, 315–338 (2004)MathSciNetMATHGoogle Scholar
  12. 12.
    Birkhoff, G.: Lattice Theory. Revised edn. American Mathematical Society, New York (1948)Google Scholar
  13. 13.
    Bonacina, M.P., Dershowitz, N.: Abstract canonical inference. ACM Transactions on Computational Logic 8(1) (2007)Google Scholar
  14. 14.
    Bonacina, M.P., Echenim, M.: Rewrite-based satisfiability procedures for recursive data structures. In: Cook, B., Sebastiani, R. (eds.) Proceedings of the Fourth Workshop on Pragmatics of Decision Procedures in Automated Reasoning (PDPAR), Fourth Federated Logic Conference (FLoC). Electronic Notes in Theoretical Computer Science, vol. 174(8), pp. 55–70. Elsevier, Amsterdam (2007)Google Scholar
  15. 15.
    Bonacina, M.P., Echenim, M.: On variable-inactivity and polynomial T-satisfiability procedures. Journal of Logic and Computation 18(1), 77–96 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Bonacina, M.P., Echenim, M.: Theory decision by decomposition. Journal of Symbolic Computation 45(2), 229–260 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Bonacina, M.P., Hsiang, J.: On rewrite programs: Semantics and relationship with Prolog. Journal of Logic Programming 14(1 & 2), 155–180 (1992)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Bonacina, M.P., Hsiang, J.: Towards a foundation of completion procedures as semidecision procedures. Theoretical Computer Science 146, 199–242 (1995)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Bonacina, M.P., Lynch, C.A., de Moura, L.: On deciding satisfiability by theorem proving with speculative inferences. Journal of Automated Reasoning 47(2), 161–189 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Brown Jr., T.C.: A Structured Design-Method for Specialized Proof Procedures. PhD thesis, California Institute of Technology, Pasadena, CA (1975)Google Scholar
  21. 21.
    Burel, G., Kirchner, C.: Completion Is an Instance of Abstract Canonical System Inference. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Goguen Festschrift 2006. LNCS, vol. 4060, pp. 497–520. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Caspard, N., Monjardet, B.: The lattice of Moore families and closure operators on a finite set: A survey. Electronic Notes in Discrete Mathematic, vol. 2 (1999)Google Scholar
  23. 23.
    Chang, C.L., Lee, R.C.T.: Symbolic Logic and Mechanical Theorem Proving. Academic Press (1973)Google Scholar
  24. 24.
    Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2005), http://www.grappa.univ-lille3.fr/tata
  25. 25.
    Comon-Lundh, H., Courtier, V.: New Decidability Results for Fragments of First-order Logic and Application to Cryptographic Protocols. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 148–164. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Dershowitz, N.: A note on simplification orderings. Information Processing Letters 9(5), 212–215 (1979)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Dershowitz, N.: Equations as programming language. In: Proceedings of the Fourth Jerusalem Conference on Information Technology, Jerusalem, Israel, pp. 114–124. IEEE Computer Society Press (May 1984)Google Scholar
  28. 28.
    Dershowitz, N.: Computing with rewrite systems. Information and Control 64(2/3), 122–157 (1985)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Dershowitz, N.: Canonical Sets of Horn Clauses. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 267–278. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  30. 30.
    Dershowitz, N.: Ordering-based strategies for Horn clauses. In: Proceedings of the Twelfth International Joint Conference on Artificial Intelligence, Sydney, Australia, pp. 118–124 (1991)Google Scholar
  31. 31.
    Dershowitz, N., Huang, G.S., Harris, M.A.: Enumeration problems related to ground Horn theories (2008), http://arxiv.org/abs/cs/0610054
  32. 32.
    Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Formal Methods and Semantics, vol. B, ch. 6, pp. 243–320. North-Holland, Amsterdam (1990)Google Scholar
  33. 33.
    Dershowitz, N., Kirchner, C.: Abstract canonical presentations. Theoretical Computer Science 357, 53–69 (2006)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Communications of the ACM 22(8), 465–476 (1979)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Dershowitz, N., Marcus, L., Tarlecki, A.: Existence, uniqueness, and construction of rewrite systems. SIAM Journal of Computing 17(4), 629–639 (1988)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Dershowitz, N., Plaisted, D.A.: Logic programming cum applicative programming. In: Proceedings of the 1985 Symposium on Logic Programming, Boston, MA, pp. 54–66 (1985)Google Scholar
  37. 37.
    Dershowitz, N., Plaisted, D.A.: Equational programming. In: Hayes, J.E., Michie, D., Richards, J. (eds.) Machine Intelligence 11: The Logic and Acquisition of Knowledge, ch. 2, pp. 21–56. Oxford University Press, Oxford (1988)Google Scholar
  38. 38.
    Dershowitz, N., Plaisted, D.A.: Rewriting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, ch. 9, pp. 535–610. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  39. 39.
    Dershowitz, N., Reddy, U.: Deductive and inductive synthesis of equational programs. Journal of Symbolic Computation 15, 467–494 (1993)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Dowek, G.: Confluence as a Cut Elimination Property. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 2–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  41. 41.
    Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of propositional Horn formulæ. Journal of Logic Programming 1(3), 267–284 (1984)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Fermüller, C., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision procedures. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. II, ch. 25, pp. 1793–1849. Elsevier, Amsterdam (2001)Google Scholar
  43. 43.
    Fribourg, L.: Slog—Logic Interpreter for Equational Clauses. In: Choffrut, C., Lengauer, T. (eds.) STACS 1990. LNCS, vol. 415, pp. 479–480. Springer, Heidelberg (1990)Google Scholar
  44. 44.
    Furbach, U., Obermaier, C.: Knowledge compilation for description logics. In: Dershowitz, N., Voronkov, A. (eds.) Proceedings of the Fourteenth International Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR), Short Papers Session (2007)Google Scholar
  45. 45.
    Gallier, J., Narendran, P., Plaisted, D.A., Raatz, S., Snyder, W.: Finding canonical rewriting systems equivalent to a finite set of ground equations in polynomial time. Journal of the Association for Computing Machinery 40(1), 1–16 (1993)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Gallier, J.H.: Fast algorithms for testing unsatisfiability of ground Horn clauses with equations. Journal of Symbolic Computation 4, 233–254 (1987)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Ganzinger, H.: A completion procedure for conditional equations. Journal of Symbolic Computation 11(1 & 2), 51–81 (1991)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Goguen, J.A., Meseguer, J.: Eqlog: Equality, types, and generic modules for logic programming. In: DeGroot, D., Lindstrom, G. (eds.) Logic Programming: Functions, Relations, and Equations, pp. 295–363. Prentice-Hall, Englewood Cliffs (1986)Google Scholar
  49. 49.
    Hanus, M.: The integration of functions into logic programming: From theory to practice. Journal of Logic Programming 19&20, 583–628 (1994)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Hodges, W.: Logical features of Horn clauses. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming. Logical Foundations, vol. I, pp. 449–503. Oxford University Press, Oxford (1993)Google Scholar
  51. 51.
    Horn, A.: On sentences which are true in direct unions of algebras. Journal of Symbolic Logic 16, 14–21 (1951)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Hsiang, J.: Refutational theorem proving using term rewriting systems. Artificial Intelligence 25, 255–300 (1985)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Hsiang, J.: Rewrite method for theorem proving in first order theories with equality. Journal of Symbolic Computation 3, 133–151 (1987)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Hsiang, J., Rusinowitch, M.: On Word Problems in Equational Theories. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 54–71. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  55. 55.
    Huet, G.: A complete proof of correctness of the Knuth–Bendix completion algorithm. Journal of Computer and System Sciences 23(1), 11–21 (1981)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Jouannaud, J.P., Waldmann, B.: Reductive conditional term rewriting systems. In: Proceedings of the Third IFIP Working Conference on Formal Description of Programming Concepts, Ebberup, Denmark (1986)Google Scholar
  57. 57.
    Kaplan, S.: Simplifying conditional term rewriting systems: Unification, termination, and confluence. Journal of Symbolic Computation 4(3), 295–334 (1987)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Kaplan, S., Rémy, J.L.: Completion algorithms for conditional rewriting systems. In: Aït-Kaci, H., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures. Rewriting Techniques, vol. II, pp. 141–170. Academic Press (1989)Google Scholar
  59. 59.
    Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970)CrossRefGoogle Scholar
  60. 60.
    Kounalis, E., Rusinowitch, M.: On word problems in Horn theories. Journal of Symbolic Computation 11(1 & 2), 113–128 (1991)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Lankford, D.S.: Canonical inference. Memo ATP-32, Automatic Theorem Proving Project, University of Texas, Austin, TX (1975)Google Scholar
  62. 62.
    Lloyd, J.W.: Foundations of Logic Programming, 2nd extended edn. Symbolic Computation Series. Springer, Berlin (1987)Google Scholar
  63. 63.
    Lynch, C., Morawska, B.: Automatic decidability. In: Plotkin, G. (ed.) Proceedings of the Seventeenth IEEE Symposium in Logic in Computer Science. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  64. 64.
    McCharen, J.D., Overbeek, R.A., Wos, L.: Complexity and related enhancements for automated theorem proving programs. Computers and Mathematics with Applications 2(1), 1–16 (1976)CrossRefMATHGoogle Scholar
  65. 65.
    McKinsey, J.C.C.: The decision problem for some classes of sentences without quantifiers. Journal of Symbolic Logic 8, 61–76 (1943)MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    Plaisted, D.A., Sattler-Klein, A.: Proof lengths for equational completion. Information and Computation 125(2), 154–170 (1996)MathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    Reddy, U.S.: Narrowing as the operational semantics of functional languages. In: Proceedings of the Symposium on Logic Programming, pp. 138–151. IEEE Computer Society Press (1985)Google Scholar
  68. 68.
    Roussel, O., Mathieu, P.: Exact Knowledge Compilation in Predicate Calculus: The Partial Achievement Case. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 161–175. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  69. 69.
    Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences (2006), http://www.research.att.com/~njas/sequences
  70. 70.
    Stickel, M.E.: Automated deduction by theory resolution. Journal of Automated Reasoning 1, 333–355 (1985)MathSciNetCrossRefMATHGoogle Scholar
  71. 71.
    Bezem, M., Klop, J.W., de Vrijer, R.: TeReSe: Term Rewriting Systems. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  72. 72.
    Wos, L., Carson, D.F., Robinson, G.A.: Efficiency and completeness of the set of support strategy in theorem proving. Journal of the Association for Computing Machinery 12, 536–541 (1965)MathSciNetCrossRefMATHGoogle Scholar
  73. 73.
    Zhang, H.: A new method for the boolean ring based theorem proving. Journal of Symbolic Computation 17(2), 189–211 (1994)MathSciNetCrossRefMATHGoogle Scholar
  74. 74.
    Zhang, H.: Contextual rewriting in automated reasoning. Fundamenta Informaticae 24, 107–123 (1995)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Maria Paola Bonacina
    • 1
  • Nachum Dershowitz
    • 2
  1. 1.Dipartimento di InformaticaUniversità degli Studi di VeronaVeronaItaly
  2. 2.School of Computer ScienceTel Aviv UniversityRamat AvivIsrael

Personalised recommendations