Programming Logics pp 19-34

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7797) | Cite as

Bio-Logics: Logical Analysis of Bioregulatory Networks

  • Alexander Bockmayr
  • Heike Siebert

Abstract

We discuss different ways of applying logic to analyze the structure and dynamics of regulatory networks in molecular biology. First, the structure of a bioregulatory network may be described naturally using propositional or multi-valued logic. Second, the resulting non-deterministic dynamics may be analyzed using temporal logic and model checking. Third, information on time delays may be incorporated using a refined modeling approach based on timed automata.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R.: Timed Automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 8–22. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid systems. Proceedings of the IEEE 88, 971–984 (2000)CrossRefGoogle Scholar
  3. 3.
    Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., Schneider, D.: Analysis and verification of qualitative models of genetic regulatory networks: A model-checking approach. In: 19th International Joint Conference on Artificial Intelligence, IJCAI 2005, Edinburgh, pp. 370–375 (2005)Google Scholar
  4. 4.
    Bernot, G., Comet, J.-P., Richard, A., Guespin, J.: Application of formal methods to biological regulatory networks: extending Thomas’ asynchronous logical approach with temporal logic. J. Theor. Biol. 229, 339–347 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biomolecular interaction networks. Theoret. Comput. Sci. 325(1), 25–44 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chaouiya, C., Remy, E., Mossé, B., Thieffry, D.: Qualitative Analysis of Regulatory Graphs: A Computational Tool Based on a Discrete Formal Framework. In: Bru, R., Romero-Vivó, S. (eds.) POSTA 2009. Lecture Notes in Control and Information Sciences, vol. 389, pp. 830–832. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinform. 22, 124–131 (2006)CrossRefGoogle Scholar
  8. 8.
    Fauré, A., Thieffry, D.: Logical modelling of cell cycle control in eukaryotes: a comparative study. Mol. BioSyst. 5, 1569–1581 (2009)CrossRefGoogle Scholar
  9. 9.
    Glass, L., Kauffman, S.A.: The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39, 103–129 (1973)CrossRefGoogle Scholar
  10. 10.
    Kauffman, S.: The Origins of Order. Oxford University Press (1993)Google Scholar
  11. 11.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437–467 (1969)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kaufman, M., Andris, F., Leo, O.: A logical analysis of T cell activation and anergy. PNAS 96(7), 3894–3899 (1999)CrossRefGoogle Scholar
  13. 13.
    Kitano, H.: Systems biology: A brief overview. Science 295, 1662–1664 (2002)CrossRefGoogle Scholar
  14. 14.
    Naldi, A., Thieffry, D., Chaouiya, C.: Decision Diagrams for the Representation and Analysis of Logical Models of Genetic Networks. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 233–247. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Remy, É., Mossé, B., Chaouiya, C., Thieffry, D.: A description of dynamical graphs associated to elementary regulatory circuits. Bioinform. 19, 172–178 (2003)CrossRefMATHGoogle Scholar
  16. 16.
    Remy, E., Ruet, P.: Incorporating Time Delays into the Logical Analysis of Gene Regulatory Networks. Bioinform. 24, 220–226 (2008)CrossRefGoogle Scholar
  17. 17.
    Richard, A.: Modèle formel pour les réseaux de régulation génétique et influence des circuits de rétroaction. PhD thesis, Univ. d’Evry, France (2006)Google Scholar
  18. 18.
    Richard, A.: Negative circuits and sustained oscillations in asynchronous automata networks. Advances in Applied Mathematics 44(4), 378–392 (2010)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Richard, A., Comet, J.-P.: Necessary conditions for multistationarity in discrete dynamical systems. Discrete Appl. Math. 155(18), 2403–2413 (2007)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Siebert, H.: Analysis of discrete bioregulatory networks using symbolic steady states. Bull. Math. Biol. 73, 873–898 (2011)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Siebert, H., Bockmayr, A.: Incorporating time delays into the logical analysis of gene regulatory networks. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 169–183. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Siebert, H., Bockmayr, A.: Context Sensitivity in Logical Modeling with Time Delays. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 64–79. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Siebert, H., Bockmayr, A.: Relating Attractors and Singular Steady States in the Logical Analysis of Bioregulatory Networks. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 36–50. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Siebert, H., Bockmayr, A.: Temporal constraints in the logical analysis of regulatory networks. Theor. Comput. Sci. 391(3), 258–275 (2008)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Soulé, C.: Mathematical approaches to gene regulation and differentiation. C.R. Paris Biolgies 329, 13–20 (2006)CrossRefGoogle Scholar
  26. 26.
    Sugita, M.: Functional analysis of chemical systems in vivo using a logical circuit equivalent. J. Theor. Biol. 1, 415–430 (1961)Google Scholar
  27. 27.
    Szallasi, Z., Stelling, J., Periwal, V.: System modeling in cellular biology. MIT Press (2006)Google Scholar
  28. 28.
    Thomas, R.: Boolean formalisation of genetic control circuits. J. Theor. Biol. 42, 565–583 (1973)CrossRefGoogle Scholar
  29. 29.
    Thomas, R.: Kinetic logic: a boolean approach to the analysis of complex regulatory systems. Lecture Notes in Biomathematics, vol. 29. Springer (1979)Google Scholar
  30. 30.
    Thomas, R.: On the relation between the logical structure of systems and their abilities to generate multiple steady states and sustained oscillations. In: Series in Synergetics, vol. 9, pp. 180–193. Springer (1981)Google Scholar
  31. 31.
    Thomas, R., d’Ari, R.: Biological Feedback. CRC Press (1990)Google Scholar
  32. 32.
    Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos 11, 180–195 (2001)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexander Bockmayr
    • 1
  • Heike Siebert
    • 1
  1. 1.DFG Research Center Matheon, Fachbereich Mathematik und InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations