First-Order Resolution Methods for Modal Logics

  • Renate A. Schmidt
  • Ullrich Hustadt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7797)


In this paper we give an overview of results for modal logic which can be shown using techniques and methods from first-order logic and resolution. Because of the breadth of the area and the many applications we focus on the use of first-order resolution methods for modal logics. In addition to traditional propositional modal logics we consider more expressive PDL-like dynamic modal logics closely related to description logics. Without going into too much detail, we survey different ways of translating modal logics into first-order logic, we explore different ways of using first-order resolution theorem provers to solve a range of reasoning problems for modal logics, and we discuss a variety of results which have been obtained in the setting of first-order resolution.


Modal Logic Decision Procedure Description Logic Modal Formula Relational Translation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    AlBarakati, R.G.: Development of a tableaux resolution prover. Master’s thesis, The University of Manchester, UK (2009)Google Scholar
  2. 2.
    AlBarakati, R.G.: spass-tab (2009),
  3. 3.
    Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded fragments of predicate logic. Journal of Philosophical Logic 27(3), 217–274 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Andréka, H., van Benthem, J., Németi, I.: Back and forth between modal logic and classical logic. Bulletin of the IGPL 3(5), 685–720 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Areces, C., Gennari, R., Heguiabehere, J., de Rijke, M.: Tree-based heuristics in modal theorem proving. In: Proc. ECAI 2000, pp. 199–203. IOS Press (2000)Google Scholar
  6. 6.
    Auffray, Y., Enjalbert, P.: Modal theorem proving: An equational viewpoint. Journal of Logic and Computation 2(3), 247–297 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 4(3), 217–247 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bachmair, L., Ganzinger, H.: Equational reasoning in saturation-based theorem proving. In: Bibel, W., Schmitt, P.H. (eds.) Automated Deduction—A Basis for Applications, vol. I, pp. 353–397. Kluwer (1998)Google Scholar
  9. 9.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 19–99. Elsevier (2001)Google Scholar
  10. 10.
    Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with Simplification as a Decision Procedure for the Monadic Class with Equality. In: Mundici, D., Gottlob, G., Leitsch, A. (eds.) KGC 1993. LNCS, vol. 713, pp. 83–96. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  11. 11.
    Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Applicable Algebra in Engineering, Communication and Computing 5(3/4), 193–212 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Baumgartner, P.: A First-order Davis-Putnam-Logeman-Loveland Procedure. In: McAllester, D. (ed.) CADE-17. LNCS (LNAI), vol. 1831, pp. 200–219. Springer, Heidelberg (2000)Google Scholar
  13. 13.
    Baumgartner, P., Horton, J.D., Spencer, B.: Merge Path Improvements for Minimal Model Hyper Tableaux. In: Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 51–66. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Baumgartner, P., Schmidt, R.A.: Blocking and Other Enhancements for Bottom-Up Model Generation Methods. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 125–139. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Baumgartner, P., Schmidt, R.A.: Blocking and other enhancements for bottom-up model generation methods. Manuscript (2008)Google Scholar
  16. 16.
    Baumgartner, P., Tinelli, C.: The Model Evolution Calculus. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 350–364. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Blackburn, P., de Rijke, M., Venema, V.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press (2001)Google Scholar
  18. 18.
    Bledsoe, W.W.: Splitting and reduction heuristics in automatic theorem proving. Artificial Intelligence 2, 55–77 (1971)CrossRefzbMATHGoogle Scholar
  19. 19.
    Brink, C., Britz, K., Schmidt, R.A.: Peirce algebras. Formal Aspects of Computing 6(3), 339–358 (1994)CrossRefzbMATHGoogle Scholar
  20. 20.
    Bry, F., Yahya, A.: Positive unit hyperresolution tableaux for minimal model generation. Journal of Automated Reasoning 25(1), 35–82 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Castilho, M.A., Fariñas del Cerro, L., Gasquet, O., Herzig, A.: Modal tableaux with propagation rules and structural rules. Fundamenta Informaticae 32(3-4), 281–297 (1997)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Chortaras, A., Trivela, D., Stamou, G.: Optimized Query Rewriting for OWL 2 QL. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 192–206. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    de Nivelle, H.: Splitting through New Proposition Symbols. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 172–185. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    de Nivelle, H., Schmidt, R.A., Hustadt, U.: Resolution-based methods for modal logics. Logic Journal of the IGPL 8(3), 265–292 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    de Rijke, M.: Extending Modal Logic. PhD thesis, University of Amsterdam, The Netherlands (1993)Google Scholar
  26. 26.
    Degtyarev, A., Fisher, M., Konev, B.: Monodic temporal resolution. ACM Transactions in Computational Logic 7(1), 108–150 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Demri, S., de Nivelle, H.: Deciding regular grammar logics with converse through first-order logic. Journal of Logic, Language and Information 14(3), 289–329 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Demri, S., Gabbay, D.: On modal logics characterized by models with relative accessibility relations: Part II. Studia Logica 66(3), 349–384 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Doherty, P., Lukaszewicz, W., Szalas, A.: Computing circumscription revisited: A reduction algorithm. Journal of Automated Reasoning 18(3), 297–336 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Doherty, P., Lukaszewicz, W., Szalas, A., Gustafsson, J.: dls (1996),
  31. 31.
    Engel, T.: Quantifier elimination in second-order predicate logic. Diplomarbeit, Fachbereich Informatik, Universität des Saarlandes, Saarbrücken, Germany (1996)Google Scholar
  32. 32.
    Fariñas del Cerro, L., Herzig, A.: Modal deduction with applications in epistemic and temporal logics. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming: Epistemic and Temporal Reasoning, pp. 499–594. Clarendon Press (1995)Google Scholar
  33. 33.
    Fermüller, C., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision procedures. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1791–1849. Elsevier (2001)Google Scholar
  34. 34.
    Fisher, M., Dixon, C., Peim, M.: Clausal temporal resolution. ACM Transactions on Computational Logic 2(1), 12–56 (2001)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Gabbay, D.M., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic. South African Computer Journal 7, 35–43 (1992)Google Scholar
  36. 36.
    Gabbay, D.M., Schmidt, R.A., Szałas, A.: Second-Order Quantifier Elimination: Foundations, Computational Aspects and Applications. Studies in Logic: Mathematical Logic and Foundations, vol. 12. College Publications (2008)Google Scholar
  37. 37.
    Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded fragment with equality. In: Proc. LICS-14, pp. 295–303. IEEE (1999)Google Scholar
  38. 38.
    Ganzinger, H., Hustadt, U., Meyer, C., Schmidt, R.A.: A resolution-based decision procedure for extensions of K4. In: Advances in Modal Logic. Lecture Notes, vol. 2, 119, pp. 225–246. CSLI Publications (2001)Google Scholar
  39. 39.
    Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In: Proc. LICS-18, pp. 55–64. IEEE (2003)Google Scholar
  40. 40.
    Ganzinger, H., Meyer, C., Veanes, M.: The two-variable guarded fragment with transitive relations. In: Proc. LICS-14, pp. 24–34. IEEE (1999)Google Scholar
  41. 41.
    Ganzinger, H., Sofronie-Stokkermans, V.: Chaining techniques for automated theorem proving in finitely-valued logics. In: Proc. ISMVL 2000, pp. 337–344. IEEE (2000)Google Scholar
  42. 42.
    Gargov, G., Passy, S.: A note on Boolean modal logic. In: Mathematical Logic: Proceedings of the 1988 Heyting Summerschool, pp. 299–309. Plenum Press (1990)Google Scholar
  43. 43.
    Gargov, G., Passy, S., Tinchev, T.: Modal environment for Boolean speculations. In: Mathematical Logic and its Applications: Proceedings of the 1986 Gödel Conference, pp. 253–263. Plenum Press (1987)Google Scholar
  44. 44.
    Georgieva, L., Hustadt, U., Schmidt, R.A.: Computational Space Efficiency and Minimal Model Generation for Guarded Formulae. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 85–99. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  45. 45.
    Georgieva, L., Hustadt, U., Schmidt, R.A.: A New Clausal Class Decidable by Hyperresolution. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 260–274. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  46. 46.
    Georgieva, L., Hustadt, U., Schmidt, R.A.: Hyperresolution for guarded formulae. Journal of Symbolic Computation 36(1–2), 163–192 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Goranko, V., Hustadt, U., Schmidt, R.A., Vakarelov, D.: SCAN is Complete for all Sahlqvist Formulae. In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS 2003. LNCS, vol. 3051, pp. 149–162. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  48. 48.
    Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M., Gabbay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 297–396. Kluwer (1999)Google Scholar
  49. 49.
    Grädel, E.: Decision Procedures for Guarded Logics. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 31–51. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  50. 50.
    Grädel, E.: On the restraining power of guards. Journal of Symbolic Logic 64, 1719–1742 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Hasegawa, R., Fujita, H., Koshimura, M.: Efficient Minimal Model Generation using Branching Lemmas. In: McAllester, D. (ed.) CADE-17. LNCS (LNAI), vol. 1831, pp. 184–199. Springer, Heidelberg (2000)Google Scholar
  52. 52.
    Herzig, A.: Raisonnement automatique en logique modale et algorithmes d’unification. PhD thesis, University Paul-Sabatier, Toulouse, France (1989)Google Scholar
  53. 53.
    Herzig, A.: A new decidable fragment of first order logic. In: Abstracts of 3rd Logical Biennial, Summer School & Conf. in honour of S. C. Kleene, Bulgaria (1990)Google Scholar
  54. 54.
    Horrocks, I., Hustadt, U., Sattler, U., Schmidt, R.A.: Computational modal logic. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic. Studies in Logic and Practical Reasoning, pp. 181–245. Elsevier (2007)Google Scholar
  55. 55.
    Humberstone, I.L.: Inaccessible worlds. Notre Dame Journal of Formal Logic 24(3), 346–352 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Humberstone, I.L.: The modal logic of ‘all and only’. Notre Dame Journal of Formal Logic 28(2), 177–188 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Hustadt, U.: Resolution-Based Decision Procedures for Subclasses of First-Order Logic. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany (1999)Google Scholar
  58. 58.
    Hustadt, U., Konev, B.: TRP++: A temporal resolution prover. In: Collegium Logicum, pp. 65–79. Kurt Gödel Society (2004)Google Scholar
  59. 59.
    Hustadt, U., Motik, B., Sattler, U.: Deciding expressive description logics in the framework of resolution. Information and Computation 206(5) (2008)Google Scholar
  60. 60.
    Hustadt, U., Schmidt, R.A.: An empirical analysis of modal theorem provers. Journal of Applied Non-Classical Logics 9(4), 479–522 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Hustadt, U., Schmidt, R.A.: Maslov’s Class K Revisited. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 172–186. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  62. 62.
    Hustadt, U., Schmidt, R.A.: On the relation of resolution and tableaux proof systems for description logics. In: IJCAI 1999, pp. 110–115. Morgan Kaufmann (1999)Google Scholar
  63. 63.
    Hustadt, U., Schmidt, R.A.: Issues of Decidability for Description Logics in the Framework of Resolution. In: Caferra, R., Salzer, G. (eds.) FTP 1998. LNCS (LNAI), vol. 1761, pp. 191–205. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  64. 64.
    Hustadt, U., Schmidt, R.A.: MSPASS: Modal Reasoning by Translation and First-Order Resolution. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 67–71. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  65. 65.
    Hustadt, U., Schmidt, R.A.: Using resolution for testing modal satisfiability and building models. Journal of Automated Reasoning 28(2), 205–232 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Hustadt, U., Schmidt, R.A., Georgieva, L.: A survey of decidable first-order fragments and description logics. Journal of Relational Methods in Computer Science 1, 251–276 (2004)Google Scholar
  67. 67.
    Kazakov, Y.: Consequence-driven reasoning for horn \(\mathcal{SHIQ}\) ontologies. In: Proc. IJCAI 2009, pp. 2040–2045 (2009)Google Scholar
  68. 68.
    Kazakov, Y., Motik, B.: A resolution-based decision procedure for \(\mathcal{SHOIQ}\). Journal of Automated Reasoning 40(2-3), 89–116 (2008); Erratum in Journal of Automated Reasoning 40(4), 357 (2008)Google Scholar
  69. 69.
  70. 70.
    Konev, B., Degtyarev, A., Dixon, C., Fisher, M., Hustadt, U.: Mechanising first-order temporal resolution. Information and Computation 199(1–2), 55–86 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Kracht, M.: Tools and Techniques in Modal Logic. Studies in Logic, vol. 142. Elsevier (1999)Google Scholar
  72. 72.
    Kurucz, Á., Németi, I., Sain, I., Simon, A.: Undecidable varieties of semilattice-ordered semigroups, of Boolean algebras with operators and logics extending lambek calculus. Bulletin of the IGPL 1(1), 91–98 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Ludwig, M.: Advancing Formal Verification: Resolution-Based Methods for Linear-Time Temporal Logics. PhD thesis, University of Liverpool, UK (2010)Google Scholar
  74. 74.
  75. 75.
    Ludwig, M., Hustadt, U.: Fair Derivations in Monodic Temporal Reasoning. In: Schmidt, R.A. (ed.) CADE-22. LNCS (LNAI), vol. 5663, pp. 261–276. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  76. 76.
    Ludwig, M., Hustadt, U.: Implementing a fair monodic temporal logic prover. AI Communication 23(2-3), 69–96 (2010)MathSciNetzbMATHGoogle Scholar
  77. 77.
    Maslov, S.J.: The inverse method for establishing deducibility for logical calculi. In: Orevkov, V.P., Petrovskiǐ, I.G., Nikol’skiǐ, S.M. (eds.) Proc. of the Steklov Institute of Mathematics, vol. 98, pp. 25–96. Amer. Math. Soc., Providence (1968)Google Scholar
  78. 78.
    Massacci, F.: Single step tableaux for modal logics: Computational properties, complexity and methodology. Journal of Automated Reasoning 24(3), 319–364 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics. Journal of Artifical Intelligence Research 36, 165–228 (2009)MathSciNetzbMATHGoogle Scholar
  80. 80.
    Nellas, K.: Reasoning about sets and relations: A tableaux-based automated theorem prover for Peirce logic. Master’s thesis, The University of Manchester, UK (2001)Google Scholar
  81. 81.
    Niemelä, I.: A Tableau Calculus for Minimal Model Reasoning. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS (LNAI), vol. 1071, pp. 278–294. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  82. 82.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 371–443. Elsevier (2001)Google Scholar
  83. 83.
    Nonnengart, A.: First-order modal logic theorem proving and functional simulation. In: Proc. IJCAI 1993, pp. 80–85. Morgan Kaufmann (1993)Google Scholar
  84. 84.
    Nonnengart, A.: A Resolution-Based Calculus For Temporal Logics. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany (1995)Google Scholar
  85. 85.
    Nonnengart, A.: Resolution-Based Calculi for Modal and Temporal Logics. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS (LNAI), vol. 1104, pp. 598–612. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  86. 86.
    Nonnengart, A., Ohlbach, H.J., Szałas, A.: Elimination of predicate quantifiers. In: Ohlbach, H.J., Reyle, U. (eds.) Logic, Language and Reasoning. Essays in Honor of Dov Gabbay, pp. 159–181. Kluwer (1999)Google Scholar
  87. 87.
    Ohlbach, H.J.: Semantics based translation methods for modal logics. Journal of Logic and Computation 1(5), 691–746 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  88. 88.
    Ohlbach, H.J.: Translation methods for non-classical logics: An overview. Bulletin of the IGPL 1(1), 69–89 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  89. 89.
    Ohlbach, H.J.: Combining Hilbert Style and Semantic Reasoning in a Resolution Framework. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 205–219. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  90. 90.
    Ohlbach, H.-J., Engel, T.: scan (1994),
  91. 91.
    Ohlbach, H.J., Nonnengart, A., de Rijke, M., Gabbay, D.: Encoding two-valued nonclassical logics in classical logic. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1403–1486. Elsevier (2001)Google Scholar
  92. 92.
    Ohlbach, H.J., Schmidt, R.A.: Functional translation and second-order frame properties of modal logics. Journal of Logic and Computation 7(5), 581–603 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  93. 93.
    Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewriting under description logic constraints. Journal of Applied Logic 8(2), 186–209 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  94. 94.
    Purdy, W.C.: Decidability of fluted logic with identity. Notre Dame Journal of Formal Logic 37(1), 84–104 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  95. 95.
    Purdy, W.C.: Quine’s ‘limits of decision’. Journal of Symbolic Logic 64(4), 1439–1466 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  96. 96.
    Quine, W.V.: Variables explained away. In: Proc. American Philosophy Society, vol. 104, pp. 343–347 (1960)Google Scholar
  97. 97.
    Quine, W.V.: Algebraic logic and predicate functors. In: Rudner, R., Scheffler, I. (eds.) Logic and Art: Esssays in Honor of Nelson Goodman. Bobbs-Merrill (1971)Google Scholar
  98. 98.
    Riazanov, A., Voronkov, A.: Vampire. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 292–296. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  99. 99.
    Riazanov, A., Voronkov, A.: Splitting without backtracking. In: Proc. IJCAI 2001, pp. 611–617. Morgan Kaufmann (2001)Google Scholar
  100. 100.
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal of the ACM 12(1), 23–41 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  101. 101.
    Sahlqvist, H.: Completeness and correspondence in the first and second order semantics for modal logics. In: Proc. 3rd Scandinavian Logic Symposium, pp. 110–143. North-Holland (1973-1975)Google Scholar
  102. 102.
    Schmidt, R.A.: Optimised Modal Translation and Resolution. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany (1997)Google Scholar
  103. 103.
    Schmidt, R.A.: Decidability by resolution for propositional modal logics. Journal of Automated Reasoning 22(4), 379–396 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  104. 104.
    Schmidt, R.A.: MSPASS (1999),
  105. 105.
    Schmidt, R.A.: Improved Second-Order Quantifier Elimination in Modal Logic. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 375–388. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  106. 106.
    Schmidt, R.A.: A new methodology for developing deduction methods. Annals of Mathematics and Artificial Intelligence 55(1–2), 155–187 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  107. 107.
    Schmidt, R.A.: Simulation and synthesis of deduction calculi. Electronic Notes in Theoretical Computer Science 262, 221–229 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  108. 108.
    Schmidt, R.A., Hustadt, U.: A Resolution Decision Procedure for Fluted Logic. In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 433–448. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  109. 109.
    Schmidt, R.A., Hustadt, U.: Mechanised Reasoning and Model Generation for Extended Modal Logics. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) Theory and Applications of Relational Structures as Knowledge Instruments. LNCS, vol. 2929, pp. 38–67. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  110. 110.
    Schmidt, R.A., Hustadt, U.: A Principle for Incorporating Axioms into the First-Order Translation of Modal Formulae. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 412–426. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  111. 111.
    Schmidt, R.A., Hustadt, U.: The axiomatic translation principle for modal logic. ACM Transactions on Computational Logic 8(4), 1–55 (2007)MathSciNetCrossRefGoogle Scholar
  112. 112.
    Schmidt, R.A., Orlowska, E., Hustadt, U.: Two Proof Systems for Peirce Algebras. In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS 2003. LNCS, vol. 3051, pp. 238–251. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  113. 113.
    Schmidt, R.A., Tishkovsky, D.: Using Tableau to Decide Expressive Description Logics with Role Negation. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 438–451. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  114. 114.
    Schulz, S.: E: A brainiac theorem prover. Journal of AI Communications 15(2–3), 111–126 (2002)zbMATHGoogle Scholar
  115. 115.
    Smith, K.J.: The axiomatic translation of modal logic into first order logic. Master’s thesis, The University of Manchester, UK (2008)Google Scholar
  116. 116.
    Smith, K.J.: Downloads for project in Axiomatic Translation of Modal Logic 2007/8 Manchester (2008),
  117. 117.
    Stenz, G.: DCTP 1.2 - System Abstract. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 335–340. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  118. 118.
    Szałas, A.: On the correspondence between modal and classical logic: An automated approach. Journal of Logic and Computation 3(6), 605–620 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  119. 119.
    van Benthem, J.: Correspondence theory. In: Gabbay, D., Guenther, F. (eds.) Handbook of Philosophical Logic, pp. 167–247. Reidel, Dordrecht (1984)CrossRefGoogle Scholar
  120. 120.
    Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C., Topic, D.: SPASS Version 2.0. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 275–279. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  121. 121.
    Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System Description: Spass Version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 514–520. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  122. 122.
    Zamov, N.K.: Modal resolutions. Soviet Mathematics 33(9), 22–29 (1989); Translated from Izv. Vyssh. Uchebn. Zaved. Mat. 9(328), 22–29 (1989)Google Scholar
  123. 123.
    Zhang, L.: CTL-RP 00.25 (2010),
  124. 124.
    Zhang, L.: Clausal Reasoning for Branching-Time Logics. PhD thesis, University of Liverpool, UK (2011)Google Scholar
  125. 125.
    Zhang, L., Hustadt, U., Dixon, C.: A Refined Resolution Calculus for CTL. In: Schmidt, R.A. (ed.) CADE-22. LNCS (LNAI), vol. 5663, pp. 245–260. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  126. 126.
    Zhang, L., Hustadt, U., Dixon, C.: CTL-RP: A computation tree logic resolution prover. AI Communication 23(2-3), 111–136 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Renate A. Schmidt
    • 1
  • Ullrich Hustadt
    • 2
  1. 1.The University of ManchesterUK
  2. 2.University of LiverpoolUK

Personalised recommendations