Harald Ganzinger’s Legacy: Contributions to Logics and Programming

  • Deepak Kapur
  • Robert Nieuwenhuis
  • Andrei Voronkov
  • Christoph Weidenbach
  • Reinhard Wilhelm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7797)


In 2004 Harald Ganzinger was nominated for the Herbrand Award, which he received only two months before he passed away on June 3, 2004. We describe Ganzinger’s scientific achievements. We hope that this paper will also be useful as a reference guide to Ganzinger’s most significant contributions and publications in many areas of computer science.


Logic Program Decision Procedure Theorem Prove Transitive Relation Tree Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ABRS09]
    Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures. ACM Transactions on Computational Logic 10(1), 1–47 (2009)MathSciNetCrossRefGoogle Scholar
  2. [AKW09]
    Althaus, E., Kruglov, E., Weidenbach, C.: Superposition Modulo Linear Arithmetic SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 84–99. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. [ARR03]
    Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures. Information and Computation 183(2), 140–164 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [BD88]
    Bachmair, L., Dershowitz, N.: Critical pair criteria for completion. Journal of Symbolic Computation 6(1), 1–18 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [BG89]
    Bertling, H., Ganzinger, H.: Completion-time optimization of rewrite-time goal solving. In: Extended Abstracts of the Third International Workshop on Unification (Preliminary Version) (1989)Google Scholar
  6. [BG90a]
    Bachmair, L., Ganzinger, H.: Completion of first-order clauses with equality by strict superposition (abstract). In: Term Rewriting: Theory and Applications (Ext. Abstracts of the 2nd German Workshop) (1990)Google Scholar
  7. [BG90b]
    Bachmair, L., Ganzinger, H.: Completion of First-order Clauses with Equality by Strict Superposition (Extended Abstract). In: Okada, M., Kaplan, S. (eds.) CTRS 1990. LNCS, vol. 516, pp. 162–180. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  8. [BG90c]
    Bachmair, L., Ganzinger, H.: On Restrictions of Ordered Paramodulation with Simplification. In: Stickel, M.E. (ed.) CADE 1990. LNCS (LNAI), vol. 449, pp. 427–441. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  9. [BG91a]
    Bachmair, L., Ganzinger, H.: Perfect model semantics for logic programs with equality. In: Furukawa, K. (ed.) Proceedings of the Eighth International Conference on Logic Programming, Paris, France, June 24-28, pp. 645–659. The MIT Press (1991)Google Scholar
  10. [BG91b]
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Technical Report MPI-I-91-208, Max-Planck-Institut für Informatik, Saarbrücken (August 1991)Google Scholar
  11. [BG92]
    Bachmair, L., Ganzinger, H.: Non-clausal Resolution and Superposition with Selection and Redundancy Criteria. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 273–284. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  12. [BG93]
    Bachmair, L., Ganzinger, H.: Associative-commutative superposition. Technical Report MPI-I-93-267, Max-Planck-Institut für Informatik, Saarbrücken (December 1993)Google Scholar
  13. [BG94a]
    Bachmair, L., Ganzinger, H.: Associative-commutative Superposition. In: Lindenstrauss, N., Dershowitz, N. (eds.) CTRS 1994. LNCS, vol. 968, pp. 155–167. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  14. [BG94b]
    Bachmair, L., Ganzinger, H.: Buchberger’s Algorithm: A Constraint-based Completion Procedure. In: Jouannaud, J.-P. (ed.) CCL 1994. LNCS, vol. 845, pp. 285–301. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  15. [BG94c]
    Bachmair, L., Ganzinger, H.: Ordered Chaining for Total Orderings. In: Bundy, A. (ed.) CADE 1994. LNCS (LNAI), vol. 814, pp. 435–450. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  16. [BG94d]
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 4(3), 217–247 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [BG94e]
    Bachmair, L., Ganzinger, H.: Rewrite techniques for transitive relations. In: Ninth Annual IEEE Symposium on Logic in Computer Science, Paris, France (July 1994)Google Scholar
  18. [BG96]
    Basin, D., Ganzinger, H.: Complexity Analysis Based on Ordered Resolution. In: Eleventh Annual IEEE Symposium on Logic in Computer Science (LICS). IEEE Computer Society Press, New Brunswick, New Jersey, USA, pp. 456–465. IEEE Computer Society Press (1996)Google Scholar
  19. [BG98a]
    Bachmair, L., Ganzinger, H.: Ordered chaining calculi for first-order theories of transitive relations. Journal of the ACM 45(6) (November 1998); Revised Version of MPI-I-95-2-00Google Scholar
  20. [BG98b]
    Bachmair, L., Ganzinger, H.: Equational reasoning in saturation-based theorem proving. In: Bibel, W., Schmitt, P. (eds.) Automated Deduction: A Basis for Applications. Kluwer (1998)Google Scholar
  21. [BG98c]
    Bachmair, L., Ganzinger, H.: Strict Basic Superposition. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 160–174. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. [BG01a]
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, ch. 2, pp. 19–99. Elsevier (2001)Google Scholar
  23. [BG01b]
    Basin, D.A., Ganzinger, H.: Automated complexity analysis based on ordered resolution. Journal of the ACM 48(1), 70–109 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  24. [BGB87]
    Bertling, H., Ganzinger, H., Baumeister, H.: CEC (Conditional Equations Completion). In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing, M. (eds.) STACS 1987. LNCS, vol. 247, p. 470. Springer, Heidelberg (1987)Google Scholar
  25. [BGLS92]
    Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic Paramodulation and Superposition. In: Kapur, D. (ed.) CADE 1992. LNCS (LNAI), vol. 607, pp. 462–476. Springer, Heidelberg (1992)Google Scholar
  26. [BGLS95]
    Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic paramodulation. Information and Computation 121(2), 172–192 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  27. [BGNR99]
    Bofill, M., Godoy, G., Nieuwenhuis, R., Rubio, A.: Paramodulation with non-monotonic orderings. In: 14th IEEE Symposium on Logic in Computer Science (LICS), Trento, Italy, July 2-5, vol. 5, pp. 225–233 (1999)Google Scholar
  28. [BGS88a]
    Bertling, H., Ganzinger, H., Schäfers, R.: CEC: A system for conditional equational completion — User manual, version 1.0 (1988)Google Scholar
  29. [BGS88b]
    Bertling, H., Ganzinger, H., Schäfers, R.: CEC: A system for the completion of conditional equational specifications. In: Ganzinger, H. (ed.) ESOP 1988. LNCS, vol. 300, pp. 378–379. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  30. [BGS88c]
    Bertling, H., Ganzinger, H., Schäfers, R.: A collection of specifications completed by the CEC-system, version 1.0 (1988)Google Scholar
  31. [BGS94]
    Bachmair, L., Ganzinger, H., Stuber, J.: Combining Algebra and Universal Algebra in First-order Theorem Proving: The Case of Commutative Rings. In: Reggio, G., Astesiano, E., Tarlecki, A. (eds.) Abstract Data Types 1994 and COMPASS 1994. LNCS, vol. 906, pp. 1–29. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  32. [BGV98]
    Bachmair, L., Ganzinger, H., Voronkov, A.: Elimination of Equality via Transformation with Ordering Constraints. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 175–190. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  33. [BGW92]
    Bachmair, L., Ganzinger, H., Waldmann, U.: Theorem Proving for Hierarchic First-order Theories. In: Kirchner, H., Levi, G. (eds.) ALP 1992. LNCS, vol. 632, pp. 420–434. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  34. [BGW93a]
    Bachmair, L., Ganzinger, H., Waldmann, U.: Set constraints are the monadic class. In: Eighth Annual IEEE Symposium on Logic in Computer Science (LICS), Montreal, Canada, pp. 75–83. IEEE Computer Society Press (1993)Google Scholar
  35. [BGW93b]
    Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with Simplification as a Decision Procedure for the Monadic Class with Equality. In: Mundici, D., Gottlob, G., Leitsch, A. (eds.) KGC 1993. LNCS, vol. 713, pp. 83–96. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  36. [BGW94]
    Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  37. [CN00]
    Comon, H., Nieuwenhuis, R.: Induction = I-Axiomatization + First-Order Consistency. Information & Computation 159(1), 151–186 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  38. [DFK06]
    Degtyarev, A., Fisher, M., Konev, B.: Monodic temporal resolution. ACM Trans. Comput. Log. 7(1), 108–150 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  39. [EKK+11]
    Eggers, A., Kruglov, E., Kupferschmid, S., Scheibler, K., Teige, T., Weidenbach, C.: Superposition Modulo Non-linear Arithmetic. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp. 119–134. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  40. [Gan76]
    Ganzinger, H.: Darstellung der Artanpassung in höheren Programmiersprachen durch Repräsentation von Gruppen. In: Schneider, H.J., Nagl, M. (eds.) Programmiersprachen, 4. Fachtagung der GI, Erlangen, Proceedings, März 8-10. Informatik-Fachberichte, vol. 1, pp. 194–202. Springer (1976)Google Scholar
  41. [Gan79a]
    Ganzinger, H.: An approach to the derivation of compiler description concepts from the mathematical semantics concept. In: Böhling, K.-H., Spies, P.P. (eds.) GI - 9. Jahrestagung, Bonn, Proceedings, Oktober 1-5. Informatik-Fachberichte, vol. 19, pp. 206–217. Springer (1979)Google Scholar
  42. [Gan79b]
    Ganzinger, H.: On Storage Optimization for Automatically Generated Compilers. In: Weihrauch, K. (ed.) GI-TCS 1979. LNCS, vol. 67, pp. 132–141. Springer, Heidelberg (1979)Google Scholar
  43. [Gan80]
    Ganzinger, H.: Transforming denotational semantics into practical attribute grammars. In: Jones, N.D. (ed.) Semantics-Directed Compiler Generation. LNCS, vol. 94, pp. 1–69. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  44. [Gan81]
    Ganzinger, H.: Description of parameterized compiler modules. In: Brauer, W. (ed.) GI - 11. Jahrestagung in Verbindung mit Third Conference of the European Co-operation in Informatics (ECI), München, Proceedings, Oktober 20.-23. Informatik-Fachberichte, vol. 50, pp. 11–19. Springer (1981)Google Scholar
  45. [Gan83a]
    Ganzinger, H.: Increasing modularity and language-independency in automatically generated compilers. Sci. Comput. Program. 3(3), 223–278 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  46. [Gan83b]
    Ganzinger, H.: Modular compiler descriptions based on abstract semantic data types. In: Proceedings 2nd Workshop on Abstract Data Types, University of Passau (1983)Google Scholar
  47. [Gan83c]
    Ganzinger, H.: Modular Compiler Descriptions Based on Abstract Semantic Data Types (Extended Abstract). In: Díaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 237–249. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  48. [Gan83d]
    Ganzinger, H.: Parameterized specifications: Parameter passing and implementation with respect to observability. ACM Transactions on Programming Languages and Systems 5(3), 318–354 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  49. [Gan86]
    Ganzinger, H.: Knuth-Bendix completion for parametric specifications with conditional equations. In: Workshop on Specification of Abstract Data Types, ADT (1986)Google Scholar
  50. [Gan87a]
    Ganzinger, H.: A completion procedure for conditional equations. In: Kaplan, S., Jouannaud, J.-P. (eds.) CTRS 1987. LNCS, vol. 308, pp. 62–83. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  51. [Gan87b]
    Ganzinger, H.: Completion with History-dependent Complexities for Generated Equations. In: Sannella, D., Tarlecki, A. (eds.) Abstract Data Types 1987. LNCS, vol. 332, pp. 73–91. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  52. [Gan87c]
    Ganzinger, H.: Ground Term Confluence in Parametric Conditional Equational Specifications. In: Brandenburg, F.J., Wirsing, M., Vidal-Naquet, G. (eds.) STACS 1987. LNCS, vol. 247, pp. 286–298. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  53. [Gan89]
    Ganzinger, H.: Order-sorted Completion: The Many-sorted Way (Extended Abstract). In: Díaz, J., Yu, Y. (eds.) CAAP 1989 and TAPSOFT 1989. LNCS, vol. 351, pp. 244–258. Springer, Heidelberg (1989)Google Scholar
  54. [Gan91a]
    Ganzinger, H.: A Completion Procedure for Conditional Equations. Journal of Symbolic Computation 11, 51–81 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  55. [Gan91b]
    Ganzinger, H.: Order-sorted completion: the many-sorted way. Theoretical Computer Science 89, 3–32 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  56. [Gan02]
    Ganzinger, H.: Shostak Light. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 332–346. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  57. [GdN99]
    Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded fragment with equality. In: 14th IEEE Symposium on Logic in Computer Science (LICS), Trento, Italy, July 2–5, pp. 295–305 (1999)Google Scholar
  58. [GGMW82]
    Ganzinger, H., Giegerich, R., Möncke, U., Wilhelm, R.: A truly generative semantics-directed compiler generator. In: SIGPLAN Symposium on Compiler Construction, pp. 172–184 (1982)Google Scholar
  59. [GHBR87]
    Ganzinger, H., Heeg, G., Baumeister, H., Rüger, M.: Smalltalk-80. Informationstechnik — IT 29(4), 241–251 (1987)Google Scholar
  60. [GHMS98]
    Ganzinger, H., Hustadt, U., Meyer, C., Schmidt, R.A.: A resolution-based decision procedure for extensions of K4. In: Zakharyaschev, M., Segerberg, K., de Rijke, M., Wansing, H. (eds.) Advances in Modal Logic 2, Papers from the Second Workshop on Advances in Modal Logic, Uppsala, Sweden, pp. 225–246. CSLI Publications (1998)Google Scholar
  61. [GHN+04]
    Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast Decision Procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  62. [GHW03]
    Ganzinger, H., Hillenbrand, T., Waldmann, U.: Superposition Modulo a Shostak Theory. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 182–196. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  63. [GJV00]
    Ganzinger, H., Jacquemard, F., Veanes, M.: Rigid reachability, the non-symmetric form of rigid E-unification. Int. J. Found. Comput. Sci. 11(1), 3–27 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  64. [GK03]
    Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In: Proc.18th IEEE Symposium on Logic in Computer Science (LICS 2003), pp. 55–64. IEEE Computer Society Press (2003)Google Scholar
  65. [GK04]
    Ganzinger, H., Korovin, K.: Integrating equational reasoning into instantiation-based theorem proving. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 71–84. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  66. [GK06]
    Ganzinger, H., Korovin, K.: Theory Instantiation. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 497–511. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  67. [GMV99]
    Ganzinger, H., Meyer, C., Veanes, M.: The two-variable guarded fragment with transitive relations. In: 14th IEEE Symposium on Logic in Computer Science (LICS), Trento, Italy, July 2-5, pp. 24–34 (1999)Google Scholar
  68. [GMW97]
    Ganzinger, H., Meyer, C., Weidenbach, C.: Soft Typing for Ordered Resolution. In: McCune, W. (ed.) CADE 1997. LNCS (LNAI), vol. 1249, pp. 321–335. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  69. [GN00]
    Godoy, G., Nieuwenhuis, R.: Paramodulation with built-in abelian groups. In: 15th IEEE Symp. Logic in Computer Science (LICS), Santa Barbara, USA, pp. 413–424. IEEE Computer Society Press (2000)Google Scholar
  70. [GN01a]
    Ganzinger, H., Nieuwenhuis, R.: Constraints and Theorem Proving. In: Comon, H., Marché, C., Treinen, R. (eds.) CCL 1999. LNCS, vol. 2002, pp. 159–201. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  71. [GN01b]
    Godoy, G., Nieuwenhuis, R.: Ordering Constraints for Deduction with Built-in Abelian Semigroups, Monoids and Groups. In: 16th IEEE Symposium on Logic in Computer Science (LICS), Boston, USA, June 16–20, pp. 38–47. IEEE Computer Society Press (2001)Google Scholar
  72. [GN04]
    Godoy, G., Nieuwenhuis, R.: Superposition with Completely Built-in Abelian Groups. Journ. Symbolic Computation 37(1), 1–33 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  73. [GNN99]
    Ganzinger, H., Nieuwenhuis, R., Nivela, P.: The Saturate System (1999), Software and documentation,
  74. [GNN01]
    Ganzinger, H., Nieuwenhuis, R., Nivela, P.: Context trees. In: EuroGP 2001. LNCS (LNAI), vol. 2038, pp. 242–256, Siena, Italy (2001)Google Scholar
  75. [GNN04]
    Ganzinger, H., Nieuwenhuis, R., Nivela, P.: Fast term indexing with coded context trees. Journal of Automated Reasoning 32(2), 103–120 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  76. [Gra95]
    Graf, P.: Substitution Tree Indexing. In: Hsiang, J. (ed.) RTA 1995. LNCS, vol. 914, pp. 117–131. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  77. [GRW77]
    Ganzinger, H., Ripken, K., Wilhelm, R.: Automatic generation of optimizing multipass compilers. In: IFIP Congress, pp. 535–540 (1977)Google Scholar
  78. [GS93]
    Ganzinger, H., Stuber, J.: Inductive Theorem Proving by Consistency for First-order Clauses. In: Rusinowitch, M., Remy, J.-L. (eds.) CTRS 1992. LNCS, vol. 656, pp. 226–241. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  79. [GS05]
    Ganzinger, H., Stuber, J.: Superposition with equivalence reasoning and delayed clause normal form transformation. Inf. Comput. 199(1-2), 3–23 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  80. [GSS00]
    Ganzinger, H., Sofronie-Stokkermans, V.: Chaining techniques for automated theorem proving in many-valued logics. In: 30th IEEE International Symposium on Multiple-Valued Logic (ISMV)L, pp. 337–344 (2000)Google Scholar
  81. [GSSW06]
    Ganzinger, H., Sofronie-Stokkermans, V., Waldmann, U.: Modular proof systems for partial functions with Evans equality. Inf. Comput. 204(10), 1453–1492 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  82. [GW75]
    Ganzinger, H., Wilhelm, R.: Verschränkung von Compiler-Moduln. In: Mühlbacher, J.R. (ed.) GI 1975. LNCS, vol. 34, pp. 654–665. Springer, Heidelberg (1975)CrossRefGoogle Scholar
  83. [GW93]
    Ganzinger, H., Waldmann, U.: Termination Proofs of Well-moded Logic Programs via Conditional Rewrite Systems. In: Rusinowitch, M., Remy, J.-L. (eds.) CTRS 1992. LNCS, vol. 656, pp. 430–437. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  84. [GW96]
    Ganzinger, H., Waldmann, U.: Theorem Proving in Cancellative Abelian Monoids. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS (LNAI), vol. 1104, pp. 388–402. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  85. [Her30]
    Herbrand, J.: Recherches sur la théorie de la démonstration. Traveaux de la Societé des Sciences de Varsoria 33 (1930); Translation appeared in van Heijenoort, J.: From Frege to Gödel: A Source Book in Mathematical Logic, pp. 525–581. Harvard University Press (1967)Google Scholar
  86. [Hil08]
    Hillenbrand, T.: Superposition and Decision Procedures – Back and Forth. PhD thesis, Universität des Saarlandes (2008)Google Scholar
  87. [HKV10]
    Hoder, K., Kovács, L., Voronkov, A.: Interpolation and Symbol Elimination in Vampire. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 188–195. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  88. [HMS08]
    Hustadt, U., Motik, B., Sattler, U.: Deciding expressive description logics in the framework of resolution. Inf. Comput. 206(5), 579–601 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  89. [HW07]
    Hillenbrand, T., Weidenbach, C.: Superposition for finite domains. Research Report MPI-I-2007-RG1-002, Max-Planck Institute for Informatics, Saarbruecken, Germany (April 2007)Google Scholar
  90. [HW10]
    Horbach, M., Weidenbach, C.: Superposition for fixed domains. ACM Transactions on Computational Logic 11(4), 1–35 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  91. [JMW98]
    Jacquemard, F., Meyer, C., Weidenbach, C.: Unification in Extensions of Shallow Equational Theories. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 76–90. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  92. [JRV06]
    Jacquemard, F., Rusinowitch, M., Vigneron, L.: Tree Automata with Equality Constraints Modulo Equational Theories. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 557–571. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  93. [KB70]
    Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, I. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press (1970)Google Scholar
  94. [KKR90]
    Kirchner, C., Kirchner, H., Rusinowitch, M.: Deduction with symbolic constraints. Revue Française d’Intelligence Artificielle 4(3), 9–52 (1990)Google Scholar
  95. [KM08]
    Kazakov, Y., Motik, B.: A resolution-based decision procedure for shoiq. Journal of Automated Reasoning 40(2-3), 89–116 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  96. [KMN88]
    Kapur, D., Musser, D.R., Narendran, P.: Only prime superpositions need be considered in the Knuth-Bendix completion procedure. Journal of Symbolic Computation 6(1), 19–36 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  97. [KV07]
    Korovin, K., Voronkov, A.: Integrating Linear Arithmetic into Superposition Calculus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  98. [LAWRS07]
    Lev-Ami, T., Weidenbach, C., Reps, T.W., Sagiv, M.: Labelled Clauses. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 311–327. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  99. [LS95]
    Lynch, C., Snyder, W.: Redundancy criteria for constrained completion. Theoretical Compututer Science 142(2), 141–177 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  100. [LV00]
    Levy, J., Veanes, M.: On the undecidability of second-order unification. Inf. Comput. 159(1-2), 125–150 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  101. [McA93]
    McAllester, D.: Automatic recognition of tractability in inferences relations. Journal of the ACM 40(2), 284–303 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  102. [McC97]
    McCune, W.: Solution of the Robbins problem. Journal of Automated Reasoning 19(3), 263–276 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  103. [McM03]
    McMillan, K.L.: Interpolation and SAT-based Model Checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  104. [Nie96]
    Nieuwenhuis, R.: Basic paramodulation and decidable theories. In: Eleventh Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, pp. 473–482. IEEE Computer Society Press (1996)Google Scholar
  105. [Nip96]
    Nipkow, T.: More Church-Rosser Proofs (in Isabelle/HOL). In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 733–747. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  106. [NN93]
    Nivela, P., Nieuwenhuis, R.: Practical Results on the Saturation of Full First-order Clauses: Experiments with the Saturate System (System Description). In: Kirchner, C. (ed.) RTA 1993. LNCS, vol. 690, pp. 436–440. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  107. [NR92a]
    Nieuwenhuis, R., Rubio, A.: Basic Superposition is Complete. In: Krieg-Brückner, B. (ed.) ESOP 1992. LNCS, vol. 582, pp. 371–390. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  108. [NR92b]
    Nieuwenhuis, R., Rubio, A.: Theorem Proving with Ordering Constrained Clauses. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 477–491. Springer, Heidelberg (1992)Google Scholar
  109. [NR94]
    Nieuwenhuis, R., Rubio, A.: AC-Superposition with Constraints: No AC-unifiers Needed. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 545–559. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  110. [NR95]
    Nieuwenhuis, R., Rubio, A.: Theorem Proving with Ordering and Equality Constrained Clauses. Journal of Symbolic Computation 19(4), 321–351 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  111. [Pet83]
    Peterson, G.E.: A technique for establishing completeness results in theorem proving with equality. SIAM J. on Computing 12(1), 82–100 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  112. [Rob65]
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal of the ACM 12(1), 23–41 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  113. [RV02]
    Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Communications 15(91-110) (2002)Google Scholar
  114. [RW69]
    Robinson, G.A., Wos, L.T.: Paramodulation and theorem-proving in first order theories with equality. Machine Intelligence 4, 135–150 (1969)MathSciNetzbMATHGoogle Scholar
  115. [SB05]
    Schulz, S., Bonacina, M.P.: On handling distinct objects in the superposition calculus. In: Notes 5th IWIL Workshop on the Implementation of Logics, pp. 11–66 (2005)Google Scholar
  116. [Sch02]
    Stephan Schulz, E.: A Brainiac Theorem Prover. Journal of AI Communications 15(2/3), 111–126 (2002)zbMATHGoogle Scholar
  117. [SH00]
    Schmidt, R.A., Hustadt, U.: A Resolution Decision Procedure for Fluted Logic. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 433–448. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  118. [SH07]
    Schmidt, R.A., Hustadt, U.: The axiomatic translation principle for modal logic. ACM Trans. Comput. Log. 8(4), 1–51 (2007)MathSciNetCrossRefGoogle Scholar
  119. [SR12]
    Seidl, H., Reuß, A.: Extending \({\cal H}_1\)-Clauses with Path Disequalities. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 165–179. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  120. [Stu98a]
    Stuber, J.: Superposition theorem proving for abelian groups represented as integer modules. Theoretical Computer Science 208(1-2), 149–177 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  121. [Stu98b]
    Stuber, J.: Superposition theorem proving for commutative rings. In: Bibel, W., Schmitt, P.H. (eds.) Automated Deduction - A Basis for Applications, vol. III. Applications, ch.2, pp. 31–55. Kluwer, Dordrecht (1998)CrossRefGoogle Scholar
  122. [SW12]
    Suda, M., Weidenbach, C.: A PLTL-Prover Based on Labelled Superposition with Partial Model Guidance. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 537–543. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  123. [SWW10]
    Suda, M., Weidenbach, C., Wischnewski, P.: On the Saturation of YAGO. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 441–456. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  124. [Wal99]
    Waldmann, U.: Cancellative Superposition Decides the Theory of Divisible Torsion-free Abelian Groups. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS (LNAI), vol. 1705, pp. 131–147. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  125. [Wal01]
    Waldmann, U.: Superposition and Chaining for Totally Ordered Divisible Abelian Groups. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 226–241. Springer, Heidelberg (2001), Scholar
  126. [Wei97]
    Weidenbach, C.: SPASS—version 0.49. Journal of Automated Reasoning 18(2), 247–252 (1997)MathSciNetCrossRefGoogle Scholar
  127. [Wei99]
    Weidenbach, C.: Towards an Automatic Analysis of Security Protocols in First-Order Logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 314–328. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  128. [WRC+76]
    Wilhelm, R., Ripken, K., Ciesinger, J., Ganzinger, H., Lahner, W., Nollmann, R.: Design evaluation of the compiler generating system MUGI. In: Yeh, R.T., Ramamoorthy, C.V. (eds.) Proceedings of the 2nd International Conference on Software Engineering, San Francisco, California, USA, 1976, October 13-15, pp. 571–576. IEEE Computer Society (1976)Google Scholar
  129. [WRCS67]
    Wos, L., Robinson, G.A., Carson, D.F., Shalla, L.: The concept of demodulation in theorem proving. Journal of the ACM 14(4), 698–709 (1967)CrossRefzbMATHGoogle Scholar
  130. [WSH+07]
    Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System Description: Spass Version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 514–520. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  131. [WW10]
    Weidenbach, C., Wischnewski, P.: Subterm contextual rewriting. AI Communications 23(2-3), 97–109 (2010)MathSciNetzbMATHGoogle Scholar
  132. [Zha88]
    Zhang, H.: Reduction, superposition and induction: Automated reasoning in an equational logic. Research Report 88–06, University of Iowa (November 1988)Google Scholar
  133. [ZK88]
    Zhang, H., Kapur, D.: First-order Theorem Proving using Conditional Rewrite Rules. In: Lusk, E.‘., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 1–20. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  134. [ZK89]
    Zhang, H., Kapur, D.: Consider only General Superpositions in Completion Procedures. In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 513–527. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  135. [ZK90]
    Zhang, H., Kapur, D.: Unnecessary inferences in associative-commutative completion procedures. Mathematical Systems Theory 23(3), 175–206 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  136. [ZR85]
    Zhang, H., Remy, J.-L.: Contextual Rewriting. In: Jouannaud, J.-P. (ed.) RTA 1985. LNCS, vol. 202, pp. 46–62. Springer, Heidelberg (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Deepak Kapur
    • 1
  • Robert Nieuwenhuis
    • 2
  • Andrei Voronkov
    • 3
  • Christoph Weidenbach
    • 4
  • Reinhard Wilhelm
    • 5
  1. 1.University of New MexicoUSA
  2. 2.Technical University of CataloniaSpain
  3. 3.University of ManchesterUK
  4. 4.Max Planck Institute for InformaticsGermany
  5. 5.Saarland UniversityGermany

Personalised recommendations