Advertisement

Statistical Model Checking for Composite Actor Systems

  • Jonas Eckhardt
  • Tobias Mühlbauer
  • José Meseguer
  • Martin Wirsing
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7841)

Abstract

In this paper we propose the so-called composite actor model for specifying composed entities such as the Internet. This model extends the actor model of concurrent computation so that it follows the “Reflective Russian Dolls” pattern and supports an arbitrary hierarchical composition of entities. To enable statistical model checking we introduce a new scheduling approach for composite actor models which guarantees the absence of unquantified nondeterminism. The underlying executable specification formalism we use is the rewriting logic-based semantic framework Maude, its probabilistic extension PMaude, and the statistical model checker PVeStA. We formalize a model transformation which—given certain formal requirements—generates a scheduled specification. We prove the correctness of the scheduling approach and the soundness of the transformation by introducing the notions of strong zero-time rule confluence and time-passing bisimulation and by showing that the transformation is a time-passing bisimulation for strongly zero-time rule confluent composite actor specifications.

Keywords

actor system rewriting logic Maude composite actor statistical model checking 

References

  1. 1.
    ØMQ: The Intelligent Transport Layer (August 07, 2012), http://www.zeromq.org/
  2. 2.
    Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT Press (1986)Google Scholar
  3. 3.
    Agha, G., Hewitt, C.: Concurrent programming using actors. In: Object-Oriented Concurrent Programming, pp. 37–53. MIT Press (1988)Google Scholar
  4. 4.
    Agha, G., Meseguer, J., Sen, K.: PMaude: Rewrite-based Specification Language for Probabilistic Object Systems. ENTCS 153(2), 213–239 (2006)Google Scholar
  5. 5.
    AlTurki, M., Meseguer, J.: PVeStA: A parallel statistical model checking and quantitative analysis tool. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    AlTurki, M., Meseguer, J., Gunter, C.A.: Probabilistic Modeling and Analysis of DoS Protection for the ASV Protocol. ENTCS 234, 3–18 (2009)Google Scholar
  7. 7.
    Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming in Erlang. Prentice Hall (1996)Google Scholar
  8. 8.
    Bentea, L., Ölveczky, P.C.: Probabilistic real-time rewrite theories and their expressive power. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 60–79. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: Modelling and Analyzing Adaptive Self-assembly Strategies with Maude. In: Durán, F. (ed.) WRLA 2012. LNCS, vol. 7571, pp. 118–138. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Eckhardt, J.: A Formal Analysis of Security Properties in Cloud Computing. Master’s thesis, LMU Munich, TU Munich (2011)Google Scholar
  12. 12.
    Eckhardt, J., Mühlbauer, T., AlTurki, M., Meseguer, J., Wirsing, M.: Stable Availability under Denial of Service Attacks through Formal Patterns. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 78–93. Springer, Heidelberg (2012)Google Scholar
  13. 13.
    Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker. In: WRLA. ENTCS, vol. 71, pp. 162–187 (2002)Google Scholar
  14. 14.
    Haller, P., Sommers, F.: Actors in Scala. Artima Developer (2012)Google Scholar
  15. 15.
    Hewitt, C., Baker, H.G.: Laws for communicating parallel processes. In: IFIP Congress, pp. 987–992 (1977)Google Scholar
  16. 16.
    Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for artificial intelligence. In: IJCAI, pp. 235–245 (1973)Google Scholar
  17. 17.
    Kwiatkowska, M., Norman, G., Parker, D., Vigliotti, M.G.: Probabilistic Mobile Ambients. TCS 410(12-13), 1272–1303 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Larsen, K.G., Skou, A.: Bisimulation through Probabilistic Testing. Inf. Comput. 94(1), 1–28 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Meseguer, J., Talcott, C.: Semantic Models for Distributed Object Reflection. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 1–36. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Mühlbauer, T.: Formal Specification and Analysis of Cloud Computing Management. Master’s thesis, LMU Munich, TU Munich (2011)Google Scholar
  21. 21.
    Wirsing, M., Eckhardt, J., Mühlbauer, T., Meseguer, J.: Design and Analysis of Cloud-Based Architectures with KLAIM and Maude. In: Durán, F. (ed.) WRLA 2012. LNCS, vol. 7571, pp. 54–82. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Jonas Eckhardt
    • 1
  • Tobias Mühlbauer
    • 1
  • José Meseguer
    • 2
  • Martin Wirsing
    • 3
  1. 1.Technische Universität MünchenGermany
  2. 2.University of Illinois at Urbana-ChampaignUSA
  3. 3.Ludwig-Maximilians-Universität MünchenGermany

Personalised recommendations